83 research outputs found

    PIXHAWK: A micro aerial vehicle design for autonomous flight using onboard computer vision

    Get PDF
    We describe a novel quadrotor Micro Air Vehicle (MAV) system that is designed to use computer vision algorithms within the flight control loop. The main contribution is a MAV system that is able to run both the vision-based flight control and stereo-vision-based obstacle detection parallelly on an embedded computer onboard the MAV. The system design features the integration of a powerful onboard computer and the synchronization of IMU-Vision measurements by hardware timestamping which allows tight integration of IMU measurements into the computer vision pipeline. We evaluate the accuracy of marker-based visual pose estimation for flight control and demonstrate marker-based autonomous flight including obstacle detection using stereo vision. We also show the benefits of our IMU-Vision synchronization for egomotion estimation in additional experiments where we use the synchronized measurements for pose estimation using the 2pt+gravity formulation of the PnP proble

    Development and applications of a vision-based unmanned helicopter

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Survey of computer vision algorithms and applications for unmanned aerial vehicles

    Get PDF
    This paper presents a complete review of computer vision algorithms and vision-based intelligent applications, that are developed in the field of the Unmanned Aerial Vehicles (UAVs) in the latest decade. During this time, the evolution of relevant technologies for UAVs; such as component miniaturization, the increase of computational capabilities, and the evolution of computer vision techniques have allowed an important advance in the development of UAVs technologies and applications. Particularly, computer vision technologies integrated in UAVs allow to develop cutting-edge technologies to cope with aerial perception difficulties; such as visual navigation algorithms, obstacle detection and avoidance and aerial decision-making. All these expert technologies have developed a wide spectrum of application for UAVs, beyond the classic military and defense purposes. Unmanned Aerial Vehicles and Computer Vision are common topics in expert systems, so thanks to the recent advances in perception technologies, modern intelligent applications are developed to enhance autonomous UAV positioning, or automatic algorithms to avoid aerial collisions, among others. Then, the presented survey is based on artificial perception applications that represent important advances in the latest years in the expert system field related to the Unmanned Aerial Vehicles. In this paper, the most significant advances in this field are presented, able to solve fundamental technical limitations; such as visual odometry, obstacle detection, mapping and localization, et cetera. Besides, they have been analyzed based on their capabilities and potential utility. Moreover, the applications and UAVs are divided and categorized according to different criteria.This research is supported by the Spanish Government through the CICYT projects (TRA2015-63708-R and TRA2013-48314-C3-1-R)

    Autonomous Navigation in Complex Indoor and Outdoor Environments with Micro Aerial Vehicles

    Get PDF
    Micro aerial vehicles (MAVs) are ideal platforms for surveillance and search and rescue in confined indoor and outdoor environments due to their small size, superior mobility, and hover capability. In such missions, it is essential that the MAV is capable of autonomous flight to minimize operator workload. Despite recent successes in commercialization of GPS-based autonomous MAVs, autonomous navigation in complex and possibly GPS-denied environments gives rise to challenging engineering problems that require an integrated approach to perception, estimation, planning, control, and high level situational awareness. Among these, state estimation is the first and most critical component for autonomous flight, especially because of the inherently fast dynamics of MAVs and the possibly unknown environmental conditions. In this thesis, we present methodologies and system designs, with a focus on state estimation, that enable a light-weight off-the-shelf quadrotor MAV to autonomously navigate complex unknown indoor and outdoor environments using only onboard sensing and computation. We start by developing laser and vision-based state estimation methodologies for indoor autonomous flight. We then investigate fusion from heterogeneous sensors to improve robustness and enable operations in complex indoor and outdoor environments. We further propose estimation algorithms for on-the-fly initialization and online failure recovery. Finally, we present planning, control, and environment coverage strategies for integrated high-level autonomy behaviors. Extensive online experimental results are presented throughout the thesis. We conclude by proposing future research opportunities

    Visual SLAM for Autonomous Navigation of MAVs

    Get PDF
    This thesis focuses on developing onboard visual simultaneous localization and mapping (SLAM) systems to enable autonomous navigation of micro aerial vehicles (MAVs), which is still a challenging topic considering the limited payload and computational capability that an MAV normally has. In MAV applications, the visual SLAM systems are required to be very efficient, especially when other visual tasks have to be done in parallel. Furthermore, robustness in pose tracking is highly desired in order to enable safe autonomous navigation of an MAV in three-dimensional (3D) space. These challenges motivate the work in this thesis in the following aspects. Firstly, the problem of visual pose estimation for MAVs using an artificial landmark is addressed. An artificial neural network (ANN) is used to robustly recognize this visual marker in cluttered environments. Then a computational projective-geometry method is implemented for relative pose computation based on the retrieved geometry information of the visual marker. The presented vision system can be used not only for pose control of MAVs, but also for providing accurate pose estimates to a monocular visual SLAM system serving as an automatic initialization module for both indoor and outdoor environments. Secondly, autonomous landing on an arbitrarily textured landing site during autonomous navigation of an MAV is achieved. By integrating an efficient local-feature-based object detection algorithm within a monocular visual SLAM system, the MAV is able to search for the landing site autonomously along a predefined path, and land on it once it has been found. Thus, the proposed monocular visual solution enables autonomous navigation of an MAV in parallel with landing site detection. This solution relaxes the assumption made in conventional vision-guided landing systems, which is that the landing site should be located inside the field of view (FOV) of the vision system before initiating the landing task. The third problem that is addressed in this thesis is multi-camera visual SLAM for robust pose tracking of MAVs. Due to the limited FOV of a single camera, pose tracking using monocular visual SLAM may easily fail when the MAV navigates in unknown environments. Previous work addresses this problem mainly by fusing information from other sensors, like an inertial measurement unit (IMU), to achieve robustness of the whole system, which does not improve the robustness of visual SLAM itself. This thesis investigates solutions for improving the pose tracking robustness of a visual SLAM system by utilizing multiple cameras. A mathematical analysis of how measurements from multiple cameras should be integrated in the optimization of visual SLAM is provided. The resulting theory allows those measurements to be used for both robust pose tracking and map updating of the visual SLAM system. Furthermore, such a multi-camera visual SLAM system is modified to be a robust constant-time visual odometry. By integrating this visual odometry with an efficient back-end which consists of loop-closure detection and pose-graph optimization processes, a near-constant time multi-camera visual SLAM system is achieved for autonomous navigation of MAVs in large-scale environments.Diese Arbeit konzentriert sich auf die Entwicklung von integrierten Systemen zur gleichzeitigen Lokalisierung und Kartierung (Simultaneous Localization and Mapping, SLAM) mit Hilfe visueller Sensoren, um die autonome Navigation von kleinen Luftfahrzeugen (Micro Aerial Vehicles, MAVs) zu ermöglichen. Dies ist noch immer ein anspruchsvolles Thema angesichts der meist begrenzten Nutzlast und Rechenleistung eines MAVs. Die dafür eingesetzten visuellen SLAM Systeme müssen sehr effizient zu sein, vor allem wenn parallel noch andere visuelle Aufgaben durchgeführt werden sollen. Darüber hinaus ist eine robuste Positionsschätzung sehr wichtig, um die sichere autonome Navigation des MAVs im dreidimensionalen (3D) Raum zu ermöglichen. Diese Herausforderungen motivieren die vorliegende Arbeit gemäß den folgenden Gesichtspunkten: Zuerst wird das Problem bearbeitet, die Pose eines MAVs mit Hilfe einer künstlichen Markierung visuell zu schätzen. Ein künstliches neuronales Netz wird verwendet, um diese visuelle Markierung auch in anspruchsvollen Umgebungen zuverlässig zu erkennen. Anschließend wird ein Verfahren aus der projektiven Geometrie eingesetzt, um die relative Pose basierend auf der gemessenen Geometrie der visuellen Markierung zu ermitteln. Das vorgestellte Bildverarbeitungssystem kann nicht nur zur Regelung der Pose des MAVs verwendet werden, sondern auch genaue Posenschätzungen zur automatischen Initialisierung eines monokularen visuellen SLAM-Systems im Innen- und Außenbereich liefern. Anschließend wird die autonome Landung eines MAVs auf einem beliebig texturierten Landeplatz während autonomer Navigation erreicht. Durch die Integration eines effizienten Objekterkennungsalgorithmus, basierend auf lokalen Bildmerkmalen in einem monokularen visuellen SLAM-System, ist das MAV in der Lage den Landeplatz autonom entlang einer vorgegebenen Strecke zu suchen, und auf ihm zu landen sobald er gefunden wurde. Die vorgestellte Lösung ermöglicht somit die autonome Navigation eines MAVs bei paralleler Landeplatzerkennung. Diese Lösung lockert die gängige Annahme in herkömmlichen Systemen zum kamerageführten Landen, dass der Landeplatz vor Beginn der Landung innerhalb des Sichtfelds des Bildverarbeitungssystems liegen muss. Das dritte in dieser Arbeit bearbeitete Problem ist visuelles SLAM mit mehreren Kameras zur robusten Posenschätzung für MAVs. Aufgrund des begrenzten Sichtfelds von einer einzigen Kamera kann die Posenschätzung von monokularem visuellem SLAM leicht fehlschlagen, wenn sich das MAV in einer unbekannten Umgebung bewegt. Frühere Arbeiten versutchen dieses Problem hauptsächlich durch die Fusionierung von Informationen anderer Sensoren, z.B. eines Inertialsensors (Inertial Measurement Unit, IMU) zu lösen um eine höhere Robustheit des Gesamtsystems zu erreichen, was die Robustheit des visuellen SLAM-Systems selbst nicht verbessert. Die vorliegende Arbeit untersucht Lösungen zur Verbesserung der Robustheit der Posenschätzung eines visuellen SLAM-Systems durch die Verwendung mehrerer Kameras. Wie Messungen von mehreren Kameras in die Optimierung für visuelles SLAM integriert werden können wird mathematisch analysiert. Die daraus resultierende Theorie erlaubt die Nutzung dieser Messungen sowohl zur robusten Posenschätzung als auch zur Aktualisierung der visuellen Karte. Ferner wird ein solches visuelles SLAM-System mit mehreren Kameras modifiziert, um in konstanter Laufzeit robuste visuelle Odometrie zu berechnen. Die Integration dieser visuellen Odometrie mit einem effizienten Back-End zur Erkennung von geschlossener Schleifen und der Optimierung des Posengraphen ermöglicht ein visuelles SLAM-System mit mehreren Kameras und fast konstanter Laufzeit zur autonomen Navigation von MAVs in großen Umgebungen

    A practical multirobot localization system

    Get PDF
    We present a fast and precise vision-based software intended for multiple robot localization. The core component of the software is a novel and efficient algorithm for black and white pattern detection. The method is robust to variable lighting conditions, achieves sub-pixel precision and its computational complexity is independent of the processed image size. With off-the-shelf computational equipment and low-cost cameras, the core algorithm is able to process hundreds of images per second while tracking hundreds of objects with a millimeter precision. In addition, we present the method's mathematical model, which allows to estimate the expected localization precision, area of coverage, and processing speed from the camera's intrinsic parameters and hardware's processing capacity. The correctness of the presented model and performance of the algorithm in real-world conditions is verified in several experiments. Apart from the method description, we also make its source code public at \emph{http://purl.org/robotics/whycon}; so, it can be used as an enabling technology for various mobile robotic problems

    Vision-Based navigation system for unmanned aerial vehicles

    Get PDF
    Mención Internacional en el título de doctorThe main objective of this dissertation is to provide Unmanned Aerial Vehicles (UAVs) with a robust navigation system; in order to allow the UAVs to perform complex tasks autonomously and in real-time. The proposed algorithms deal with solving the navigation problem for outdoor as well as indoor environments, mainly based on visual information that is captured by monocular cameras. In addition, this dissertation presents the advantages of using the visual sensors as the main source of data, or complementing other sensors in providing useful information; in order to improve the accuracy and the robustness of the sensing purposes. The dissertation mainly covers several research topics based on computer vision techniques: (I) Pose Estimation, to provide a solution for estimating the 6D pose of the UAV. This algorithm is based on the combination of SIFT detector and FREAK descriptor; which maintains the performance of the feature points matching and decreases the computational time. Thereafter, the pose estimation problem is solved based on the decomposition of the world-to-frame and frame-to-frame homographies. (II) Obstacle Detection and Collision Avoidance, in which, the UAV is able to sense and detect the frontal obstacles that are situated in its path. The detection algorithm mimics the human behaviors for detecting the approaching obstacles; by analyzing the size changes of the detected feature points, combined with the expansion ratios of the convex hull constructed around the detected feature points from consecutive frames. Then, by comparing the area ratio of the obstacle and the position of the UAV, the method decides if the detected obstacle may cause a collision. Finally, the algorithm extracts the collision-free zones around the obstacle, and combining with the tracked waypoints, the UAV performs the avoidance maneuver. (III) Navigation Guidance, which generates the waypoints to determine the flight path based on environment and the situated obstacles. Then provide a strategy to follow the path segments and in an efficient way and perform the flight maneuver smoothly. (IV) Visual Servoing, to offer different control solutions (Fuzzy Logic Control (FLC) and PID), based on the obtained visual information; in order to achieve the flight stability as well as to perform the correct maneuver; to avoid the possible collisions and track the waypoints. All the proposed algorithms have been verified with real flights in both indoor and outdoor environments, taking into consideration the visual conditions; such as illumination and textures. The obtained results have been validated against other systems; such as VICON motion capture system, DGPS in the case of pose estimate algorithm. In addition, the proposed algorithms have been compared with several previous works in the state of the art, and are results proves the improvement in the accuracy and the robustness of the proposed algorithms. Finally, this dissertation concludes that the visual sensors have the advantages of lightweight and low consumption and provide reliable information, which is considered as a powerful tool in the navigation systems to increase the autonomy of the UAVs for real-world applications.El objetivo principal de esta tesis es proporcionar Vehiculos Aereos no Tripulados (UAVs) con un sistema de navegacion robusto, para permitir a los UAVs realizar tareas complejas de forma autonoma y en tiempo real. Los algoritmos propuestos tratan de resolver problemas de la navegacion tanto en ambientes interiores como al aire libre basandose principalmente en la informacion visual captada por las camaras monoculares. Ademas, esta tesis doctoral presenta la ventaja de usar sensores visuales bien como fuente principal de datos o complementando a otros sensores en el suministro de informacion util, con el fin de mejorar la precision y la robustez de los procesos de deteccion. La tesis cubre, principalmente, varios temas de investigacion basados en tecnicas de vision por computador: (I) Estimacion de la Posicion y la Orientacion (Pose), para proporcionar una solucion a la estimacion de la posicion y orientacion en 6D del UAV. Este algoritmo se basa en la combinacion del detector SIFT y el descriptor FREAK, que mantiene el desempeno del a funcion de puntos de coincidencia y disminuye el tiempo computacional. De esta manera, se soluciona el problema de la estimacion de la posicion basandose en la descomposicion de las homografias mundo a imagen e imagen a imagen. (II) Deteccion obstaculos y elusion colisiones, donde el UAV es capaz de percibir y detectar los obstaculos frontales que se encuentran en su camino. El algoritmo de deteccion imita comportamientos humanos para detectar los obstaculos que se acercan, mediante el analisis de la magnitud del cambio de los puntos caracteristicos detectados de referencia, combinado con los ratios de expansion de los contornos convexos construidos alrededor de los puntos caracteristicos detectados en frames consecutivos. A continuacion, comparando la proporcion del area del obstaculo y la posicion del UAV, el metodo decide si el obstaculo detectado puede provocar una colision. Por ultimo, el algoritmo extrae las zonas libres de colision alrededor del obstaculo y combinandolo con los puntos de referencia, elUAV realiza la maniobra de evasion. (III) Guiado de navegacion, que genera los puntos de referencia para determinar la trayectoria de vuelo basada en el entorno y en los obstaculos detectados que encuentra. Proporciona una estrategia para seguir los segmentos del trazado de una manera eficiente y realizar la maniobra de vuelo con suavidad. (IV) Guiado por Vision, para ofrecer soluciones de control diferentes (Control de Logica Fuzzy (FLC) y PID), basados en la informacion visual obtenida con el fin de lograr la estabilidad de vuelo, asi como realizar la maniobra correcta para evitar posibles colisiones y seguir los puntos de referencia. Todos los algoritmos propuestos han sido verificados con vuelos reales en ambientes exteriores e interiores, tomando en consideracion condiciones visuales como la iluminacion y las texturas. Los resultados obtenidos han sido validados con otros sistemas: como el sistema de captura de movimiento VICON y DGPS en el caso del algoritmo de estimacion de la posicion y orientacion. Ademas, los algoritmos propuestos han sido comparados con trabajos anteriores recogidos en el estado del arte con resultados que demuestran una mejora de la precision y la robustez de los algoritmos propuestos. Esta tesis doctoral concluye que los sensores visuales tienen las ventajes de tener un peso ligero y un bajo consumo y, proporcionar informacion fiable, lo cual lo hace una poderosa herramienta en los sistemas de navegacion para aumentar la autonomia de los UAVs en aplicaciones del mundo real.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Carlo Regazzoni.- Secretario: Fernando García Fernández.- Vocal: Pascual Campoy Cerver

    Use of Unmanned Aerial Systems in Civil Applications

    Get PDF
    Interest in drones has been exponentially growing in the last ten years and these machines are often presented as the optimal solution in a huge number of civil applications (monitoring, agriculture, emergency management etc). However the promises still do not match the data coming from the consumer market, suggesting that the only big field in which the use of small unmanned aerial vehicles is actually profitable is the video-makers’ one. This may be explained partly with the strong limits imposed by existing (and often "obsolete") national regulations, but also - and pheraps mainly - with the lack of real autonomy. The vast majority of vehicles on the market nowadays are infact autonomous only in the sense that they are able to follow a pre-determined list of latitude-longitude-altitude coordinates. The aim of this thesis is to demonstrate that complete autonomy for UAVs can be achieved only with a performing control, reliable and flexible planning platforms and strong perception capabilities; these topics are introduced and discussed by presenting the results of the main research activities performed by the candidate in the last three years which have resulted in 1) the design, integration and control of a test bed for validating and benchmarking visual-based algorithm for space applications; 2) the implementation of a cloud-based platform for multi-agent mission planning; 3) the on-board use of a multi-sensor fusion framework based on an Extended Kalman Filter architecture
    corecore