5,284 research outputs found

    Sub space: Enhancing the spatial awareness of trainee submariners using 3D simulation environments

    Get PDF
    Rapid advancements in computer technology have facilitated the development of practical and economically feasible three dimensional (3D) computer-generated simulation environments that have been utilized for training in a number of different fields. In particular, this development has been heavily influenced by innovations within the gaming industry, where First Person Shooter (FPS) games are often considered to be on the cutting edge of gaming technology in terms of visual fidelity and performance. 3D simulation environments built upon FPS gaming technologies can be used to realistically represent real world places, while also providing a dynamic and responsive experiential based learning environment for trainees. This type of training environment can be utilized effectively when training within the corresponding real world space may not be safe, practical, or economically feasible. This thesis explores the effectiveness of 3D simulation environments based on FPS gaming technologies to enhance the spatial awareness of trainees in unfamiliar real world spaces. The purpose was to identify the characteristics that contribute to effective learning within such environments. In order to identify these characteristics, a model was proposed representing the interrelationships between, and determinant factors of, the concepts of spatial cognition, learning within a simulation environment, and computer-generated 3D environments. The Location and Scenario Training System (LASTS), developed by the Royal Australian Navy, was evaluated to determine whether experience within the LASTS environment could benefit trainee submariners on Collins class submarines. The LASTS environment utilises the Unreal Runtime FPS game engine to provide a realistic representation of the Main Generator Room (MGR) on-board a Collins class submarine. This simulation was used to engage trainees in a simplified exercise based on the location of items relevant to a 12 Point Safety Round performed inside the MGR. Five trainee submariners were exposed to LASTS and then required to conduct the same exercise on-board a Collins class submarine. This mode of learning was compared to traditional non-immersive classroom teaching involving five additional trainee submariners who were also required to complete the same exercise inside the MGR. A mixture of qualitative and quantitative approaches to data collection and analysis was used to ascertain the effectiveness of LASTS as well as the contributing factors to this and learners\u27 perception of the value of the environment. Results indicated that LASTS could be successfully used as a training tool to enhance the spatial awareness of trainee submariners with regard to the MGR on-board a Collins class submarine. LASTS trainees also demonstrated a better spatial understanding of the MGR environment as a result of their experience compared to trainees who were the recipients of traditional classroom based training. The contributing characteristics of the proposed model were also validated with reference to the data gathered from the LASTS case study. This indicated that the model could be utilized in the design of future 3D simulation environments based on gaming technology in order to facilitate effective spatial awareness training

    Two Fields Are Better Than One: Developmental and Comparative Perspectives On Understanding Spatial Reorientation

    Get PDF
    Occasionally, we lose track of our position in the world, and must re-establish where we are located in order to function. This process has been termed the ability to reorient and was first studied by Ken Cheng in 1986. Reorientation research has revealed some powerful cross-species commonalities. It has also engaged the question of human uniqueness because it has been claimed that human adults reorient differently from other species, or from young human children, in a fashion grounded in the distinctive combinatorial power of human language. In this chapter, we consider the phenomenon of reorientation in comparative perspective, both to evaluate specific claims regarding commonalities and differences in spatial navigation, and also to illustrate, more generally, how comparative cognition research and research in human cognitive development have deep mutual relevance

    No single, stable 3D representation can explain pointing biases in a spatial updating task

    Get PDF
    People are able to keep track of objects as they navigate through space, even when objects are out of sight. This requires some kind of representation of the scene and of the observer's location but the form this might take is debated. We tested the accuracy and reliability of observers' estimates of the visual direction of previously-viewed targets. Participants viewed 4 objects from one location, with binocular vision and small head movements then, without any further sight of the targets, they walked to another location and pointed towards them. All conditions were tested in an immersive virtual environment and some were also carried out in a real scene. Participants made large, consistent pointing errors that are poorly explained by any stable 3D representation. Any explanation based on a 3D representation would have to posit a different layout of the remembered scene depending on the orientation of the obscuring wall at the moment the participant points. Our data show that the mechanisms for updating visual direction of unseen targets are not based on a stable 3D model of the scene, even a distorted one

    Designing a training tool for imaging mental models

    Get PDF
    The training process can be conceptualized as the student acquiring an evolutionary sequence of classification-problem solving mental models. For example a physician learns (1) classification systems for patient symptoms, diagnostic procedures, diseases, and therapeutic interventions and (2) interrelationships among these classifications (e.g., how to use diagnostic procedures to collect data about a patient's symptoms in order to identify the disease so that therapeutic measures can be taken. This project developed functional specifications for a computer-based tool, Mental Link, that allows the evaluative imaging of such mental models. The fundamental design approach underlying this representational medium is traversal of virtual cognition space. Typically intangible cognitive entities and links among them are visible as a three-dimensional web that represents a knowledge structure. The tool has a high degree of flexibility and customizability to allow extension to other types of uses, such a front-end to an intelligent tutoring system, knowledge base, hypermedia system, or semantic network

    Touch- and Walkable Virtual Reality to Support Blind and Visually Impaired Peoples‘ Building Exploration in the Context of Orientation and Mobility

    Get PDF
    Der Zugang zu digitalen Inhalten und Informationen wird immer wichtiger für eine erfolgreiche Teilnahme an der heutigen, zunehmend digitalisierten Zivilgesellschaft. Solche Informationen werden meist visuell präsentiert, was den Zugang für blinde und sehbehinderte Menschen einschränkt. Die grundlegendste Barriere ist oft die elementare Orientierung und Mobilität (und folglich die soziale Mobilität), einschließlich der Erlangung von Kenntnissen über unbekannte Gebäude vor deren Besuch. Um solche Barrieren zu überbrücken, sollten technische Hilfsmittel entwickelt und eingesetzt werden. Es ist ein Kompromiss zwischen technologisch niedrigschwellig zugänglichen und verbreitbaren Hilfsmitteln und interaktiv-adaptiven, aber komplexen Systemen erforderlich. Die Anpassung der Technologie der virtuellen Realität (VR) umfasst ein breites Spektrum an Entwicklungs- und Entscheidungsoptionen. Die Hauptvorteile der VR-Technologie sind die erhöhte Interaktivität, die Aktualisierbarkeit und die Möglichkeit, virtuelle Räume und Modelle als Abbilder von realen Räumen zu erkunden, ohne dass reale Gefahren und die begrenzte Verfügbarkeit von sehenden Helfern auftreten. Virtuelle Objekte und Umgebungen haben jedoch keine physische Beschaffenheit. Ziel dieser Arbeit ist es daher zu erforschen, welche VR-Interaktionsformen sinnvoll sind (d.h. ein angemessenes Verbreitungspotenzial bieten), um virtuelle Repräsentationen realer Gebäude im Kontext von Orientierung und Mobilität berührbar oder begehbar zu machen. Obwohl es bereits inhaltlich und technisch disjunkte Entwicklungen und Evaluationen zur VR-Technologie gibt, fehlt es an empirischer Evidenz. Zusätzlich bietet diese Arbeit einen Überblick über die verschiedenen Interaktionen. Nach einer Betrachtung der menschlichen Physiologie, Hilfsmittel (z.B. taktile Karten) und technologischen Eigenschaften wird der aktuelle Stand der Technik von VR vorgestellt und die Anwendung für blinde und sehbehinderte Nutzer und der Weg dorthin durch die Einführung einer neuartigen Taxonomie diskutiert. Neben der Interaktion selbst werden Merkmale des Nutzers und des Geräts, der Anwendungskontext oder die nutzerzentrierte Entwicklung bzw. Evaluation als Klassifikatoren herangezogen. Begründet und motiviert werden die folgenden Kapitel durch explorative Ansätze, d.h. im Bereich 'small scale' (mit sogenannten Datenhandschuhen) und im Bereich 'large scale' (mit einer avatargesteuerten VR-Fortbewegung). Die folgenden Kapitel führen empirische Studien mit blinden und sehbehinderten Nutzern durch und geben einen formativen Einblick, wie virtuelle Objekte in Reichweite der Hände mit haptischem Feedback erfasst werden können und wie verschiedene Arten der VR-Fortbewegung zur Erkundung virtueller Umgebungen eingesetzt werden können. Daraus werden geräteunabhängige technologische Möglichkeiten und auch Herausforderungen für weitere Verbesserungen abgeleitet. Auf der Grundlage dieser Erkenntnisse kann sich die weitere Forschung auf Aspekte wie die spezifische Gestaltung interaktiver Elemente, zeitlich und räumlich kollaborative Anwendungsszenarien und die Evaluation eines gesamten Anwendungsworkflows (d.h. Scannen der realen Umgebung und virtuelle Erkundung zu Trainingszwecken sowie die Gestaltung der gesamten Anwendung in einer langfristig barrierefreien Weise) konzentrieren.Access to digital content and information is becoming increasingly important for successful participation in today's increasingly digitized civil society. Such information is mostly presented visually, which restricts access for blind and visually impaired people. The most fundamental barrier is often basic orientation and mobility (and consequently, social mobility), including gaining knowledge about unknown buildings before visiting them. To bridge such barriers, technological aids should be developed and deployed. A trade-off is needed between technologically low-threshold accessible and disseminable aids and interactive-adaptive but complex systems. The adaptation of virtual reality (VR) technology spans a wide range of development and decision options. The main benefits of VR technology are increased interactivity, updatability, and the possibility to explore virtual spaces as proxies of real ones without real-world hazards and the limited availability of sighted assistants. However, virtual objects and environments have no physicality. Therefore, this thesis aims to research which VR interaction forms are reasonable (i.e., offering a reasonable dissemination potential) to make virtual representations of real buildings touchable or walkable in the context of orientation and mobility. Although there are already content and technology disjunctive developments and evaluations on VR technology, there is a lack of empirical evidence. Additionally, this thesis provides a survey between different interactions. Having considered the human physiology, assistive media (e.g., tactile maps), and technological characteristics, the current state of the art of VR is introduced, and the application for blind and visually impaired users and the way to get there is discussed by introducing a novel taxonomy. In addition to the interaction itself, characteristics of the user and the device, the application context, or the user-centered development respectively evaluation are used as classifiers. Thus, the following chapters are justified and motivated by explorative approaches, i.e., in the group of 'small scale' (using so-called data gloves) and in the scale of 'large scale' (using an avatar-controlled VR locomotion) approaches. The following chapters conduct empirical studies with blind and visually impaired users and give formative insight into how virtual objects within hands' reach can be grasped using haptic feedback and how different kinds of VR locomotion implementation can be applied to explore virtual environments. Thus, device-independent technological possibilities and also challenges for further improvements are derived. On the basis of this knowledge, subsequent research can be focused on aspects such as the specific design of interactive elements, temporally and spatially collaborative application scenarios, and the evaluation of an entire application workflow (i.e., scanning the real environment and exploring it virtually for training purposes, as well as designing the entire application in a long-term accessible manner)

    Gender differences in spatial ability within virtual reality

    Get PDF
    EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Minimal information to determine affine shape equivalence.

    Get PDF

    An aesthetics of touch: investigating the language of design relating to form

    Get PDF
    How well can designers communicate qualities of touch? This paper presents evidence that they have some capability to do so, much of which appears to have been learned, but at present make limited use of such language. Interviews with graduate designer-makers suggest that they are aware of and value the importance of touch and materiality in their work, but lack a vocabulary to fully relate to their detailed explanations of other aspects such as their intent or selection of materials. We believe that more attention should be paid to the verbal dialogue that happens in the design process, particularly as other researchers show that even making-based learning also has a strong verbal element to it. However, verbal language alone does not appear to be adequate for a comprehensive language of touch. Graduate designers-makers’ descriptive practices combined non-verbal manipulation within verbal accounts. We thus argue that haptic vocabularies do not simply describe material qualities, but rather are situated competences that physically demonstrate the presence of haptic qualities. Such competencies are more important than groups of verbal vocabularies in isolation. Design support for developing and extending haptic competences must take this wide range of considerations into account to comprehensively improve designers’ capabilities

    Proceedings of the 1993 Conference on Intelligent Computer-Aided Training and Virtual Environment Technology

    Get PDF
    The volume 2 proceedings from the 1993 Conference on Intelligent Computer-Aided Training and Virtual Environment Technology are presented. Topics discussed include intelligent computer assisted training (ICAT) systems architectures, ICAT educational and medical applications, virtual environment (VE) training and assessment, human factors engineering and VE, ICAT theory and natural language processing, ICAT military applications, VE engineering applications, ICAT knowledge acquisition processes and applications, and ICAT aerospace applications

    On Inter-referential Awareness in Collaborative Augmented Reality

    Get PDF
    For successful collaboration to occur, a workspace must support inter-referential awareness - or the ability for one participant to refer to a set of artifacts in the environment, and for that reference to be correctly interpreted by others. While referring to objects in our everyday environment is a straight-forward task, the non-tangible nature of digital artifacts presents us with new interaction challenges. Augmented reality (AR) is inextricably linked to the physical world, and it is natural to believe that the re-integration of physical artifacts into the workspace makes referencing tasks easier; however, we find that these environments combine the referencing challenges from several computing disciplines, which compound across scenarios. This dissertation presents our studies of this form of awareness in collaborative AR environments. It stems from our research in developing mixed reality environments for molecular modeling, where we explored spatial and multi-modal referencing techniques. To encapsulate the myriad of factors found in collaborative AR, we present a generic, theoretical framework and apply it to analyze this domain. Because referencing is a very human-centric activity, we present the results of an exploratory study which examines the behaviors of participants and how they generate references to physical and virtual content in co-located and remote scenarios; we found that participants refer to content using physical and virtual techniques, and that shared video is highly effective in disambiguating references in remote environments. By implementing user feedback from this study, a follow-up study explores how the environment can passively support referencing, where we discovered the role that virtual referencing plays during collaboration. A third study was conducted in order to better understand the effectiveness of giving and interpreting references using a virtual pointer; the results suggest the need for participants to be parallel with the arrow vector (strengthening the argument for shared viewpoints), as well as the importance of shadows in non-stereoscopic environments. Our contributions include a framework for analyzing the domain of inter-referential awareness, the development of novel referencing techniques, the presentation and analysis of our findings from multiple user studies, and a set of guidelines to help designers support this form of awareness
    • …
    corecore