135 research outputs found

    The Z2\mathbb{Z}_2-genus of Kuratowski minors

    Full text link
    A drawing of a graph on a surface is independently even if every pair of nonadjacent edges in the drawing crosses an even number of times. The Z2\mathbb{Z}_2-genus of a graph GG is the minimum gg such that GG has an independently even drawing on the orientable surface of genus gg. An unpublished result by Robertson and Seymour implies that for every tt, every graph of sufficiently large genus contains as a minor a projective t×tt\times t grid or one of the following so-called tt-Kuratowski graphs: K3,tK_{3,t}, or tt copies of K5K_5 or K3,3K_{3,3} sharing at most 22 common vertices. We show that the Z2\mathbb{Z}_2-genus of graphs in these families is unbounded in tt; in fact, equal to their genus. Together, this implies that the genus of a graph is bounded from above by a function of its Z2\mathbb{Z}_2-genus, solving a problem posed by Schaefer and \v{S}tefankovi\v{c}, and giving an approximate version of the Hanani-Tutte theorem on orientable surfaces. We also obtain an analogous result for Euler genus and Euler Z2\mathbb{Z}_2-genus of graphs.Comment: 23 pages, 7 figures; a few references added and correcte
    corecore