62 research outputs found

    Multiparametric Magnetic Resonance Imaging Artificial Intelligence Pipeline for Oropharyngeal Cancer Radiotherapy Treatment Guidance

    Get PDF
    Oropharyngeal cancer (OPC) is a widespread disease and one of the few domestic cancers that is rising in incidence. Radiographic images are crucial for assessment of OPC and aid in radiotherapy (RT) treatment. However, RT planning with conventional imaging approaches requires operator-dependent tumor segmentation, which is the primary source of treatment error. Further, OPC expresses differential tumor/node mid-RT response (rapid response) rates, resulting in significant differences between planned and delivered RT dose. Finally, clinical outcomes for OPC patients can also be variable, which warrants the investigation of prognostic models. Multiparametric MRI (mpMRI) techniques that incorporate simultaneous anatomical and functional information coupled to artificial intelligence (AI) approaches could improve clinical decision support for OPC by providing immediately actionable clinical rationale for adaptive RT planning. If tumors could be reproducibly segmented, rapid response could be classified, and prognosis could be reliably determined, overall patient outcomes would be optimized to improve the therapeutic index as a function of more risk-adapted RT volumes. Consequently, there is an unmet need for automated and reproducible imaging which can simultaneously segment tumors and provide predictive value for actionable RT adaptation. This dissertation primarily seeks to explore and optimize image processing, tumor segmentation, and patient outcomes in OPC through a combination of advanced imaging techniques and AI algorithms. In the first specific aim of this dissertation, we develop and evaluate mpMRI pre-processing techniques for use in downstream segmentation, response prediction, and outcome prediction pipelines. Various MRI intensity standardization and registration approaches were systematically compared and benchmarked. Moreover, synthetic image algorithms were developed to decrease MRI scan time in an effort to optimize our AI pipelines. We demonstrated that proper intensity standardization and image registration can improve mpMRI quality for use in AI algorithms, and developed a novel method to decrease mpMRI acquisition time. Subsequently, in the second specific aim of this dissertation, we investigated underlying questions regarding the implementation of RT-related auto-segmentation. Firstly, we quantified interobserver variability for an unprecedented large number of observers for various radiotherapy structures in several disease sites (with a particular emphasis on OPC) using a novel crowdsourcing platform. We then trained an AI algorithm on a series of extant matched mpMRI datasets to segment OPC primary tumors. Moreover, we validated and compared our best model\u27s performance to clinical expert observers. We demonstrated that AI-based mpMRI OPC tumor auto-segmentation offers decreased variability and comparable accuracy to clinical experts, and certain mpMRI input channel combinations could further improve performance. Finally, in the third specific aim of this dissertation, we predicted OPC primary tumor mid-therapy (rapid) treatment response and prognostic outcomes. Using co-registered pre-therapy and mid-therapy primary tumor manual segmentations of OPC patients, we generated and characterized treatment sensitive and treatment resistant pre-RT sub-volumes. These sub-volumes were used to train an AI algorithm to predict individual voxel-wise treatment resistance. Additionally, we developed an AI algorithm to predict OPC patient progression free survival using pre-therapy imaging from an international data science competition (ranking 1st place), and then translated these approaches to mpMRI data. We demonstrated AI models could be used to predict rapid response and prognostic outcomes using pre-therapy imaging, which could help guide treatment adaptation, though further work is needed. In summary, the completion of these aims facilitates the development of an image-guided fully automated OPC clinical decision support tool. The resultant deliverables from this project will positively impact patients by enabling optimized therapeutic interventions in OPC. Future work should consider investigating additional imaging timepoints, imaging modalities, uncertainty quantification, perceptual and ethical considerations, and prospective studies for eventual clinical implementation. A dynamic version of this dissertation is publicly available and assigned a digital object identifier through Figshare (doi: 10.6084/m9.figshare.22141871)

    Dosimétrie clinique en radiothérapie moléculaire

    Get PDF
    La radiothérapie moléculaire (RTM) est une radiothérapie systémique, où le produit radiopharmaceutique se lie spécifiquement sur les tumeurs pour détruire sélectivement les cibles cancéreuses tout en préservant les organes sains. Lutathera® (177Lu-DOTATATE) est un radiopharmaceutique récemment approuvé par la FDA/EMA pour le traitement des tumeurs neuroendocrines gastro-entéro-pancréatiques (GEP-NETs). Dans la pratique clinique, les patients reçoivent une activité fixe de Lutathera®, 4 cycles de 7,4 GBq, en supposant que la pharmacocinétique du radiopharmaceutique est même entre les patients. La dosimétrie spécifique au patient permet un changement de paradigme majeur dans l'administration de la RTM, passant d'une approche "taille unique" à une véritable médecine personnalisée où l'activité administrée est évaluée spécifiquement sur la base de l'irradiation délivrée à chaque patient. Pour ce faire, il faut généralement déterminer la distribution spatiale du radiopharmaceutique dans les organes par imagerie à différents moments (imagerie quantitative), estimer le nombre total de désintégrations radioactives en intégrant l'activité dans le temps (évaluation pharmacocinétique) et calculer la dose absorbée à partir des caractéristiques physiques du radionucléide et du transport de l'énergie dans les tissus du patient. Actuellement, il n'existe pas de procédures normalisées pour effectuer la dosimétrie clinique. En outre, l'évaluation des incertitudes associées à la procédure de dosimétrie n'est pas triviale. Le projet DosiTest a été lancé pour évaluer les incertitudes associées à chacune des étapes du flux de travail de la dosimétrie clinique, via une inter-comparaison multicentrique basée sur la modélisation de Monte Carlo (MC). La première phase de la thèse a consisté à comparer les analyses dosimétriques effectuées par différents centres utilisant le même logiciel et le même protocole sur le même ensemble de données de patients dans le cadre du projet IAEA-CRP E23005 afin d'évaluer la précision de la dosimétrie clinique. À notre connaissance, c'est la première fois qu'une comparaison dosimétrique multicentrique d'un seul ensemble de données cliniques sur un patient a été entreprise en utilisant le même protocole et le même logiciel par de nombreux centres dans le monde entier. Elle a mis en évidence le besoin crucial d'établir des points de contrôle et d'effectuer des vérifications de bon sens pour éliminer les disparités significatives entre les résultats et distinguer les pratiques erronées de la variabilité inter-opérateurs acceptable. Un résultat important de ce travail a été le manque d'assurance qualité en dosimétrie de médecine nucléaire clinique et la nécessité de développer des procédures de contrôle qualité. Alors que la dosimétrie gagne en popularité en médecine nucléaire, les meilleures pratiques doivent être adoptées pour garantir la fiabilité, la traçabilité et la reproductibilité des résultats. Cela met également en avant la nécessité de dispenser une formation suffisante après l'acquisition des progiciels relativement nouveaux, au-delà de quelques jours. Ceci est clairement insuffisant dans le contexte d'un domaine émergent où l'expérience professionnelle fait souvent défaut. Ensuite, l'étude de l'exactitude de la dosimétrie clinique nécessite de générer des ensembles de données de test, afin de définir la vérité de base par rapport à laquelle les procédures de dosimétrie clinique peuvent être comparées. La deuxième section de la thèse traite de la simulation de l'imagerie TEMP scintigraphique tridimensionnelle en implémentant le mouvement du détecteur d'auto-contournement dans la boîte à outils Monte Carlo GATE. Après la validation des projections TEMP/TDM sur des modèles anthropomorphes, une série d'images réalistes de patients cliniques a été générée. La dernière partie de la thèse a établi la preuve de concept du projet DosiTest, en utilisant un ensemble de données TEMP/TDM virtuelles (simulées) à différents moments, avec différentes gamma-caméras, permettant de comparer différentes techniques dosimétriques et d'évaluer la faisabilité clinique du projet dans certains départements de médecine nucléaire.Molecular radiotherapy (MRT) is a systemic radiotherapy where the radiopharmaceutical binds specifically to tumours to selectively destroy cancer targets while sparing healthy organs. Lutathera® (177Lu-DOTATATE) is a radiopharmaceutical that was recently FDA/EMA approved for the treatment of the GastroEnteroPancreatic NeuroEndocrine Tumours (GEP-NETs). In clinical practice, patients are administered with a fixed activity of Lutathera®, assuming that radiopharmaceutical distribution is the same for all patients. Patient-specific dosimetry allows for a major paradigm shift in the administration of MRT from "one-size-fits-all" approach, to real personalised medicine where administered activity is assessed specifically on the base of the irradiation delivered to each patient. This usually requires determining the spatial distribution of the radiopharmaceutical in various organs via imaging at different times (quantitative imaging), estimating the total number of radioactive decays by integrating activity over time (pharmacokinetic assessment) and calculating the absorbed dose using the physical characteristics of the radionuclide and implementing radiation transport in patient's tissues. Currently, there are no standardised procedures to perform clinical dosimetry. In addition, the assessment of the uncertainties associated with the dosimetry procedure is not trivial. The DosiTest project (http://www.dositest.org/) was initiated to evaluate uncertainties associated with each of the steps of the clinical dosimetry workflow, via a multicentric inter-comparison based on Monte Carlo (MC) modelling. The first phase of the thesis compared dosimetry analysis performed by various centres using the same software and protocol on the same patient dataset as a part of IAEA-CRP E23005 project in order to appraise the precision of clinical dosimetry. To our knowledge, this is the first time that a multi-centric dosimetry comparison of a single clinical patient dataset has been undertaken using the same protocol and software by many centres worldwide. It highlighted the critical need to establish checkpoints and conduct sanity checks to eliminate significant disparities among results, and distinguish erroneous practice with acceptable inter-operator variability. A significant outcome of this work was the lack of quality assurance in clinical nuclear medicine dosimetry and the need for the development of quality control procedures. While dosimetry is gaining popularity in nuclear medicine, best practices should be adopted to ensure that results are reliable, traceable, and reproducible. It also brings forward the need to deliver sufficient training after the acquisition of the relatively new software packages beyond a couple of days. This is clearly insufficient in a context of an emerging field where the professional experience is quite often lacking. Next, the study of clinical dosimetry accuracy requires generating test datasets, to define the ground truth against which clinical dosimetry procedures can be benchmarked. The second section of the thesis addressed the simulation of three-dimensional scintigraphic SPECT imaging by implementing auto-contouring detector motion in the GATE Monte Carlo toolkit. Following the validation of SPECT/CT projections on anthropomorphic models, a series of realistic clinical patient images were generated. The last part of the thesis established the proof of concept of the DosiTest project, using a virtual (simulated) SPECT/CT dataset at various time points, with various gamma cameras, enabling comparison of various dosimetric techniques and to assess the clinical feasibility of the project in selected nuclear medicine departments

    Evaluering av maskinlæringsmetoder for automatisk tumorsegmentering

    Get PDF
    The definition of target volumes and organs at risk (OARs) is a critical part of radiotherapy planning. In routine practice, this is typically done manually by clinical experts who contour the structures in medical images prior to dosimetric planning. This is a time-consuming and labor-intensive task. Moreover, manual contouring is inherently a subjective task and substantial contour variability can occur, potentially impacting on radiotherapy treatment and image-derived biomarkers. Automatic segmentation (auto-segmentation) of target volumes and OARs has the potential to save time and resources while reducing contouring variability. Recently, auto-segmentation of OARs using machine learning methods has been integrated into the clinical workflow by several institutions and such tools have been made commercially available by major vendors. The use of machine learning methods for auto-segmentation of target volumes including the gross tumor volume (GTV) is less mature at present but is the focus of extensive ongoing research. The primary aim of this thesis was to investigate the use of machine learning methods for auto-segmentation of the GTV in medical images. Manual GTV contours constituted the ground truth in the analyses. Volumetric overlap and distance-based metrics were used to quantify auto-segmentation performance. Four different image datasets were evaluated. The first dataset, analyzed in papers I–II, consisted of positron emission tomography (PET) and contrast-enhanced computed tomography (ceCT) images of 197 patients with head and neck cancer (HNC). The ceCT images of this dataset were also included in paper IV. Two datasets were analyzed separately in paper III, namely (i) PET, ceCT, and low-dose CT (ldCT) images of 86 patients with anal cancer (AC), and (ii) PET, ceCT, ldCT, and T2 and diffusion-weighted (T2W and DW, respectively) MR images of a subset (n = 36) of the aforementioned AC patients. The last dataset consisted of ceCT images of 36 canine patients with HNC and was analyzed in paper IV. In paper I, three approaches to auto-segmentation of the GTV in patients with HNC were evaluated and compared, namely conventional PET thresholding, classical machine learning algorithms, and deep learning using a 2-dimensional (2D) U-Net convolutional neural network (CNN). For the latter two approaches the effect of imaging modality on auto-segmentation performance was also assessed. Deep learning based on multimodality PET/ceCT image input resulted in superior agreement with the manual ground truth contours, as quantified by geometric overlap and distance-based performance evaluation metrics calculated on a per patient basis. Moreover, only deep learning provided adequate performance for segmentation based solely on ceCT images. For segmentation based on PET-only, all three approaches provided adequate segmentation performance, though deep learning ranked first, followed by classical machine learning, and PET thresholding. In paper II, deep learning-based auto-segmentation of the GTV in patients with HNC using a 2D U-Net architecture was evaluated more thoroughly by introducing new structure-based performance evaluation metrics and including qualitative expert evaluation of the resulting auto-segmentation quality. As in paper I, multimodal PET/ceCT image input provided superior segmentation performance, compared to the single modality CNN models. The structure-based metrics showed quantitatively that the PET signal was vital for the sensitivity of the CNN models, as the superior PET/ceCT-based model identified 86 % of all malignant GTV structures whereas the ceCT-based model only identified 53 % of these structures. Furthermore, the majority of the qualitatively evaluated auto-segmentations (~ 90 %) generated by the best PET/ceCT-based CNN were given a quality score corresponding to substantial clinical value. Based on papers I and II, deep learning with multimodality PET/ceCT image input would be the recommended approach for auto-segmentation of the GTV in human patients with HNC. In paper III, deep learning-based auto-segmentation of the GTV in patients with AC was evaluated for the first time, using a 2D U-Net architecture. Furthermore, an extensive comparison of the impact of different single modality and multimodality combinations of PET, ceCT, ldCT, T2W, and/or DW image input on quantitative auto-segmentation performance was conducted. For both the 86-patient and 36-patient datasets, the models based on PET/ceCT provided the highest mean overlap with the manual ground truth contours. For this task, however, comparable auto-segmentation quality was obtained for solely ceCT-based CNN models. The CNN model based solely on T2W images also obtained acceptable auto-segmentation performance and was ranked as the second-best single modality model for the 36-patient dataset. These results indicate that deep learning could prove a versatile future tool for auto-segmentation of the GTV in patients with AC. Paper IV investigated for the first time the applicability of deep learning-based auto-segmentation of the GTV in canine patients with HNC, using a 3-dimensional (3D) U-Net architecture and ceCT image input. A transfer learning approach where CNN models were pre-trained on the human HNC data and subsequently fine-tuned on canine data was compared to training models from scratch on canine data. These two approaches resulted in similar auto-segmentation performances, which on average was comparable to the overlap metrics obtained for ceCT-based auto-segmentation in human HNC patients. Auto-segmentation in canine HNC patients appeared particularly promising for nasal cavity tumors, as the average overlap with manual contours was 25 % higher for this subgroup, compared to the average for all included tumor sites. In conclusion, deep learning with CNNs provided high-quality GTV autosegmentations for all datasets included in this thesis. In all cases, the best-performing deep learning models resulted in an average overlap with manual contours which was comparable to the reported interobserver agreements between human experts performing manual GTV contouring for the given cancer type and imaging modality. Based on these findings, further investigation of deep learning-based auto-segmentation of the GTV in the given diagnoses would be highly warranted.Definisjon av målvolum og risikoorganer er en kritisk del av planleggingen av strålebehandling. I praksis gjøres dette vanligvis manuelt av kliniske eksperter som tegner inn strukturenes konturer i medisinske bilder før dosimetrisk planlegging. Dette er en tids- og arbeidskrevende oppgave. Manuell inntegning er også subjektiv, og betydelig variasjon i inntegnede konturer kan forekomme. Slik variasjon kan potensielt påvirke strålebehandlingen og bildebaserte biomarkører. Automatisk segmentering (auto-segmentering) av målvolum og risikoorganer kan potensielt spare tid og ressurser samtidig som konturvariasjonen reduseres. Autosegmentering av risikoorganer ved hjelp av maskinlæringsmetoder har nylig blitt implementert som del av den kliniske arbeidsflyten ved flere helseinstitusjoner, og slike verktøy er kommersielt tilgjengelige hos store leverandører av medisinsk teknologi. Auto-segmentering av målvolum inkludert tumorvolumet gross tumor volume (GTV) ved hjelp av maskinlæringsmetoder er per i dag mindre teknologisk modent, men dette området er fokus for omfattende pågående forskning. Hovedmålet med denne avhandlingen var å undersøke bruken av maskinlæringsmetoder for auto-segmentering av GTV i medisinske bilder. Manuelle GTVinntegninger utgjorde grunnsannheten (the ground truth) i analysene. Mål på volumetrisk overlapp og avstand mellom sanne og predikerte konturer ble brukt til å kvantifisere kvaliteten til de automatisk genererte GTV-konturene. Fire forskjellige bildedatasett ble evaluert. Det første datasettet, analysert i artikkel I–II, bestod av positronemisjonstomografi (PET) og kontrastforsterkede computertomografi (ceCT) bilder av 197 pasienter med hode/halskreft. ceCT-bildene i dette datasettet ble også inkludert i artikkel IV. To datasett ble analysert separat i artikkel III, nemlig (i) PET, ceCT og lavdose CT (ldCT) bilder av 86 pasienter med analkreft, og (ii) PET, ceCT, ldCT og T2- og diffusjonsvektet (henholdsvis T2W og DW) MR-bilder av en undergruppe (n = 36) av de ovennevnte analkreftpasientene. Det siste datasettet, som bestod av ceCT-bilder av 36 hunder med hode/halskreft, ble analysert i artikkel IV

    MAGNETIC RESONANCE ELASTOGRAPHY FOR APPLICATIONS IN RADIATION THERAPY

    Get PDF
    Magnetic resonance elastography (MRE) is an imaging technique that combines mechanical waves and magnetic resonance imaging (MRI) to determine the elastic properties of tissue. Because MRE is non-invasive, there is great potential and interest for its use in the detection of cancer. The first part of this thesis concentrates on parameter optimization and imaging quality of an MRE system. To do this, we developed a customized quality assurance phantom, and a series of quality control tests to characterize the MRE system. Our results demonstrated that through optimizing scan parameters, such as frequency and amplitude, MRE could provide a good qualitative elastogram for targets with different elasticity values and dimensions. The second part investigated the feasibility of integrating MRE into radiation therapy (RT) workflow. With the aid of a tissue-equivalent prostate phantom (embedded with three dominant intraprostatic lesions (DILs)), an MRE-integrated RT framework was developed. This framework contains a comprehensive scan protocol including Computed Tomography (CT) scan, combined MRI/MRE scans and a Volumetric Modulated Arc Therapy (VMAT) technique for treatment delivery. The results showed that using the comprehensive information could boost the MRE defined DILs to 84 Gy while keeping the remainder of the prostate to 78 Gy. Using a VMAT based technique allowed us to achieve a highly conformal plan (conformity index for the prostate and combined DILs was 0.98 and 0.91). Based on our feasibility study, we concluded that MRE data can be used for targeted radiation dose escalation. In summary, this thesis demonstrates that MRE is feasible for applications in radiation oncology

    Segmentierung medizinischer Bilddaten und bildgestützte intraoperative Navigation

    Get PDF
    Die Entwicklung von Algorithmen zur automatischen oder semi-automatischen Verarbeitung von medizinischen Bilddaten hat in den letzten Jahren mehr und mehr an Bedeutung gewonnen. Das liegt zum einen an den immer besser werdenden medizinischen Aufnahmemodalitäten, die den menschlichen Körper immer feiner virtuell abbilden können. Zum anderen liegt dies an der verbesserten Computerhardware, die eine algorithmische Verarbeitung der teilweise im Gigabyte-Bereich liegenden Datenmengen in einer vernünftigen Zeit erlaubt. Das Ziel dieser Habilitationsschrift ist die Entwicklung und Evaluation von Algorithmen für die medizinische Bildverarbeitung. Insgesamt besteht die Habilitationsschrift aus einer Reihe von Publikationen, die in drei übergreifende Themenbereiche gegliedert sind: -Segmentierung medizinischer Bilddaten anhand von vorlagenbasierten Algorithmen -Experimentelle Evaluation quelloffener Segmentierungsmethoden unter medizinischen Einsatzbedingungen -Navigation zur Unterstützung intraoperativer Therapien Im Bereich Segmentierung medizinischer Bilddaten anhand von vorlagenbasierten Algorithmen wurden verschiedene graphbasierte Algorithmen in 2D und 3D entwickelt, die einen gerichteten Graphen mittels einer Vorlage aufbauen. Dazu gehört die Bildung eines Algorithmus zur Segmentierung von Wirbeln in 2D und 3D. In 2D wird eine rechteckige und in 3D eine würfelförmige Vorlage genutzt, um den Graphen aufzubauen und das Segmentierungsergebnis zu berechnen. Außerdem wird eine graphbasierte Segmentierung von Prostatadrüsen durch eine Kugelvorlage zur automatischen Bestimmung der Grenzen zwischen Prostatadrüsen und umliegenden Organen vorgestellt. Auf den vorlagenbasierten Algorithmen aufbauend, wurde ein interaktiver Segmentierungsalgorithmus, der einem Benutzer in Echtzeit das Segmentierungsergebnis anzeigt, konzipiert und implementiert. Der Algorithmus nutzt zur Segmentierung die verschiedenen Vorlagen, benötigt allerdings nur einen Saatpunkt des Benutzers. In einem weiteren Ansatz kann der Benutzer die Segmentierung interaktiv durch zusätzliche Saatpunkte verfeinern. Dadurch wird es möglich, eine semi-automatische Segmentierung auch in schwierigen Fällen zu einem zufriedenstellenden Ergebnis zu führen. Im Bereich Evaluation quelloffener Segmentierungsmethoden unter medizinischen Einsatzbedingungen wurden verschiedene frei verfügbare Segmentierungsalgorithmen anhand von Patientendaten aus der klinischen Routine getestet. Dazu gehörte die Evaluierung der semi-automatischen Segmentierung von Hirntumoren, zum Beispiel Hypophysenadenomen und Glioblastomen, mit der frei verfügbaren Open Source-Plattform 3D Slicer. Dadurch konnte gezeigt werden, wie eine rein manuelle Schicht-für-Schicht-Vermessung des Tumorvolumens in der Praxis unterstützt und beschleunigt werden kann. Weiterhin wurde die Segmentierung von Sprachbahnen in medizinischen Aufnahmen von Hirntumorpatienten auf verschiedenen Plattformen evaluiert. Im Bereich Navigation zur Unterstützung intraoperativer Therapien wurden Softwaremodule zum Begleiten von intra-operativen Eingriffen in verschiedenen Phasen einer Behandlung (Therapieplanung, Durchführung, Kontrolle) entwickelt. Dazu gehört die erstmalige Integration des OpenIGTLink-Netzwerkprotokolls in die medizinische Prototyping-Plattform MeVisLab, die anhand eines NDI-Navigationssystems evaluiert wurde. Außerdem wurde hier ebenfalls zum ersten Mal die Konzeption und Implementierung eines medizinischen Software-Prototypen zur Unterstützung der intraoperativen gynäkologischen Brachytherapie vorgestellt. Der Software-Prototyp enthielt auch ein Modul zur erweiterten Visualisierung bei der MR-gestützten interstitiellen gynäkologischen Brachytherapie, welches unter anderem die Registrierung eines gynäkologischen Brachytherapie-Instruments in einen intraoperativen Datensatz einer Patientin ermöglichte. Die einzelnen Module führten zur Vorstellung eines umfassenden bildgestützten Systems für die gynäkologische Brachytherapie in einem multimodalen Operationssaal. Dieses System deckt die prä-, intra- und postoperative Behandlungsphase bei einer interstitiellen gynäkologischen Brachytherapie ab

    Towards on-line plan adaptation of unified intensity-modulated arc therapy using a fast-direct aperture optimization algorithm

    Get PDF
    External beam radiotherapy (EBRT) plays a vital role in the treatment of cancer, with close to half of all cancer patients receiving EBRT at some point over their course of treatment. Although EBRT is a well-established form of treatment, there are a number of ways in which EBRT could still be improved in terms of quality and efficiency for treatment planning and radiation dose delivery. This thesis reports a series of improvements made to EBRT. First, we developed and evaluated a new treatment planning technique called unified intensity-modulated arc therapy (UIMAT) which combines the optimization and delivery of rotational volumetric modulated arc therapy (VMAT) and fixed-gantry intensity-modulated radiation therapy (IMRT). When retrospectively compared to clinical treatment plans using VMAT or IMRT alone, UIMAT plans reduced the dose to nearby critical structures by as much as 23% without compromising tumour volume coverage. The UIMAT plans were also more efficient to deliver. The reduction in normal tissue dose could help lower the probability of treatment-related toxicities, or alternatively could be used to improve tumour control probability, via dose escalation, while maintaining current dose limits for organs at risk. Second, we developed a new fast inverse direct aperture optimization (FIDAO) algorithm for IMRT, VMAT, and UIMAT treatment planning. FIDAO introduces modifications to the direct aperture optimization (DAO) process that help improve its computational efficiency. As demonstrated in several test cases, these modifications do not significantly impact the plan quality but reduced the DAO time by as much as 200-fold. If implemented with graphical processing units (GPUs), this project may allow for applications such as on-line treatment adaptation. Third, we investigated a method of acquiring tissue density information from cone-beam computed tomography (CBCT) datasets for on-line dose calculations, plan assessment, and potentially plan adaptation using FIDAO. This calibration technique accounts for patient-specific scattering conditions, demonstrated high dosimetric accuracy, and can be easily automated for on-line plan assessment. Collectively, these three projects will help reduce the normal tissue doses from EBRT, improve the planning and delivery efficiency, and pave the way for application like on-line plan assessment and adaptive radiotherapy in response to anatomical changes

    Deformable registration of X-ray and MRI for post-implant dosimetry in low-dose-rate prostate brachytherapy

    Get PDF
    Purpose Dosimetric assessment following permanent prostate brachytherapy (PPB) commonly involves seed localization using CT and prostate delineation using coregistered MRI. However, pelvic CT leads to additional imaging dose and requires significant resources to acquire and process both CT and MRI. In this study, we propose an automatic postimplant dosimetry approach that retains MRI for soft‐tissue contouring, but eliminates the need for CT and reduces imaging dose while overcoming the inconsistent appearance of seeds on MRI with three projection x rays acquired using a mobile C‐arm. Methods Implanted seeds are reconstructed using x rays by solving a combinatorial optimization problem and deformably registered to MRI. Candidate seeds are located in MR images using local hypointensity identification. X ray‐based seeds are registered to these candidate seeds in three steps: (a) rigid registration using a stochastic evolutionary optimizer, (b) affine registration using an iterative closest point optimizer, and (c) deformable registration using a local feature point search and nonrigid coherent point drift. The algorithm was evaluated using 20 PPB patients with x rays acquired immediately postimplant and T2‐weighted MR images acquired the next day at 1.5 T with mean 0.8 × 0.8 × 3.0 mmurn:x-wiley:00942405:media:mp13667:mp13667-math-0001 voxel dimensions. Target registration error (TRE) was computed based on the distance from algorithm results to manually identified seed locations using coregistered CT acquired the same day as the MRI. Dosimetric accuracy was determined by comparing prostate D90 determined using the algorithm and the ground truth CT‐based seed locations. Results The mean ± standard deviation TREs across 20 patients including 1774 seeds were 2.23 ± 0.52 mm (rigid), 1.99 ± 0.49 mm (rigid + affine), and 1.76 ± 0.43 mm (rigid + affine + deformable). The corresponding mean ± standard deviation D90 errors were 5.8 ± 4.8%, 3.4 ± 3.4%, and 2.3 ± 1.9%, respectively. The mean computation time of the registration algorithm was 6.1 s. Conclusion The registration algorithm accuracy and computation time are sufficient for clinical PPB postimplant dosimetry

    Inter- and Intrafraction Motion Management for MR guided Proton Therapy of Pancreatic Carcinoma

    Get PDF
    Hintergrund: Patienten mit Bauchspeicheldrüsenkrebs könnten von der Protonentherapie (PT) profitieren, aufgrund ihres Potentials der Schonung von Risikoorganen. Jedoch führen die inter- und intrafraktionelle Beweglichkeit der Bauchspeicheldrüse zu hohen Unsicherheiten bei der Dosisapplikation und erfordern daher große Sicherheitssäume. Aufgrund des hohen Weichgewebskontrastes in der MRT und der Möglichkeit der Echtzeitbildgebung gewinnt die Unterstützung der Strahlentherapie durch die MRT stetig höheres Interesse. In der Translation von konventioneller Röntgen-geführter XT zur MR-geführten PT müssen Methoden zur Kontrolle der inter- und intrafraktionellen Organbeweglichkeit re-evaluiert, adaptiert oder neu entwickelt werden. Fragestellung/Hypothese: Für die interfraktionelle Bewegungskontrolle wurde die Hypothese aufgestellt, dass der neu entwickelte Flüssigmarker BioXmark®, injiziert in Pankreasgewebe, sichtbar in der MR-Bildgebung ist und verglichen zu üblich verwendeten soliden Markern die Bildartefakte reduziert. Für die intrafraktionelle Bewegungskontrolle wurde erwartet, dass ein Patienten-individuelles MR-kompatibles Korsett die atmungs-induzierte Pankreasbeweglichkeit reduziert, von Patienten mit Tumoren im Oberbauch gut vertragen wird und in die PT implementiert werden kann. Ein 4D MR-Linac Bewegungsphantom wurde für die Evaluierung der Geometrietreue und der Genauigkeit der Bewegungswiedergabe des genutzten diagnostischen 3.0 T MR Scanners verwendet. Es wurde erwartet, dass dieses Phantom für die Verwendung am diagnostischen MR Scanner implementiert werden kann und für die Qualitätssicherung von bewegungscharakterisierenden MR Pulssequenzen genutzt werden kann. Material und Methode: Die MR Eigenschaften von BioXmark® wurden in einer Phantomstudie durch MR Relaxometrie quantitativ analysiert und verglichen mit zwei Arten von soliden Marker. Des weiteren wurde die MR-Sichtbarkeit von BioXmark® das erste mal in ex vivo tumorösem Pankreasgewebe getestet für Markern dreier Größenkategorien (20/25 µL, 50/60 µL, 100 µL), injeziert mit jeweils drei verschiedenen Nadelgrößen (18 G, 22 G, 25 G). Ein 4D MR-Linac Bewegungsphantom wurde für den diagnostischen 3.0 T MR Scanner unserer Klinik kommissioniert und Programme für die automatische Evaluierung der 3D Geometrietreue und Genauigkeit der Bewegungscharakterisierung entwickelt. Drei Korsetts aus verschiedenen Materialien (PU, PE, 3DPE) wurden in Bezug auf die Verwendbarkeit in der PT untersucht. Des weiteren wurde der Effekt der Korsetts auf die Reduzierung der Pankreasbeweglichkeit bei einem gesunden Freiwilligen analysiert, mittels zeitaufgelöster 2D-cine MRT und respirationskorrelierter 4D-MRT in einem 1.5 T MR Scanner. Daraufhin wurde eine klinische Studie durchgeführt, die 13 Patienten mit Tumor im Oberbauch einschloss. Im Rahmen der Studie wurde der Effekt des verwendeten 3DPE Korsetts auf die Reduktion der Pankreasbeweglichkeit analysiert, mittels 2D-cine MRT und 4D-MRT in einem 3.0 T MR Scanner. Abschließend wurde die Patienten-Verträglichkeit bei Anwendung des Korsetts analysiert. Ergebnisse: Für BioXmark® wurde keine Korrelation zwischen der Intensität der Sichtbarkeit und Artefakte gefunden (RS = 0.0) und nur eine schwache Korrelation zwischen der Größe der Sichtbarkeit und Artefakte (RS = 0.4). Im Gegensatz dazu wurde für die soliden Marker eine lineare Abhängigkeit der Größe der Sichtbarkeit und Artefakte (RS = 0.99) und eine nicht-lineare Abhängigkeit zwischen der Intensität der Sichtbarkeit und Artefakte gefunden (RS = 0.964). Nach Injektion in drei ex vivo Pankreas-Resektionspräparate war BioXmark® als Hypointensität in sowohl T1- als auch T2- gewichteten MR Bildgebung sichtbar. Marker aller drei getesteten Größenkategorien waren in klinisch verwendeten MR Sequenzen detektierbar. Jedoch führte eine diffuse Gelierung oder Injektion zu nah am Geweberand zur Minderung der Detektierbarkeit. Dies hatte zur Folge hatte, dass 4 von in Summe 17 Markern in der MR-Bildgebung nicht erkennbar waren. Das MR-Linac Bewegungsphantom wurde erfolgreich am diagnostischen 3.0 T MR Scanner kommissioniert. Eine Fixierungs- und Positionierungshilfe wurde entwickelt und konstruiert, die eine sichere und reproduzierbare Positionierung des Aktuators und des Phantoms (< 0.4mm) ermöglichte. Ein Programm zur automatischen Verzerrungsanalyse wurde entwickelt, basierend auf einer Referenz-CT Aufnahme. Die Auswertung einer klinisch verwendeten 3D GRE Sequenz offenbarte eine maximale Verzerrung von 1.3mm in einem elliptischen Zylindervolumen von 15×23×6 cm³. Das Referenz-CT offenbarte zusätzlich einen Abweichung der eingestellten Targetbeweglichkeit in AP/LR Richtung. Kontrastreiche und geometrisch korrekte 2D-cine MR Bilder des sich bewegenden Phantom-Targets konnten aufgenommen werden. Ein Programm für ein automatisiertes Target-Tracking wurde entwickelt, welches eine hohe Genauigkeit der bewegungscharakterisierenden Sequenzen bestätigte (< 0.2mm in 2D-cine MRT, < 0.3mm in 4D-MRT). Eine vergleichbare Reduzierung der respirationsbedingten Pankreas-Bewegung von 46%–56% (7.7mm – 9.4 mm) wurde für die drei getesteten Korsetts gefunden. Die Materialanalyse führte jedoch zum Ausschluss des PU Korsetts für die Verwendung in der PT, aufgrund der gravierenden Heterogenität des Korsettmaterials. Das 3DPE Korsett wurde als für die PT implementierbar bewertet, wobei eine direkte Integration in der PT Planung mit der klinisch verwendeten Hounsfield-SPR Übersetzungstabelle möglich war. Das 3DPE Korsett wurde für 13 Patienten mit Tumor im Oberbauch in den PT Arbeitsablauf integriert, in welchem das Korsett von den Patienten gut toleriert wurde. Die MR-basierte Analyse der respirationsbedingten Pankreasbewegung in 9 Patienten mit und ohne Korsett ergab eine Reduzierung der Beweglichkeit um 37% (~3.3 mm). Schlussfolgerungen: BioXmark® und das entwickelte 3DPE Korsett wurden als verwendbar für die MR geführte PT bewertet. BioXmark® war in der MR-Bildgebung als Hypointensität sichtbar, unabhängig von der verwendeten MR Pulssequenz, solange die Markergröße die Voxelauflösung überschritt. Die MR-Sichtbarkeit von BioXmark® sollte jedoch in vivo getestet werden, da sich dort die Gelierung unterscheiden könnte und dementsprechend die Sichtbarkeit beeinflussen könnte. Das MR-Linac Bewegungsphantom kann in Zukunft für QA von bewegungscharakterisierenden Pulssequenzen des diagnostischen MR Scanners verwendet werden. Dies ist empfohlen, wann immer neue Pulssequenzen implementiert werden. Das entwickelte Korsett reduziert die respirationsbedingte Pankreas-Beweglichkeit in Patienten mit Tumor im Oberbauch um ~37% und kann in Zukunft für die MR geführte PT verwendet werden. Die Studie offenbarte jedoch auch, dass eine erhebliche Anzahl an Patienten nicht von der Verwendung eines Korsetts profitiert, aufgrund ihrer initial geringen Beweglichkeit bei freier Atmung (< 6 mm). Schlussfolgernd ist eine vorherige Einschätzung der Beweglichkeit jedes individuellen Patienten bei freier Atmung zu empfehlen, bevor eine Entscheidung über die Implementierung des Korsetts in der PT getroffen wird

    Quantitative imaging in radiation oncology

    Get PDF
    Artificially intelligent eyes, built on machine and deep learning technologies, can empower our capability of analysing patients’ images. By revealing information invisible at our eyes, we can build decision aids that help our clinicians to provide more effective treatment, while reducing side effects. The power of these decision aids is to be based on patient tumour biologically unique properties, referred to as biomarkers. To fully translate this technology into the clinic we need to overcome barriers related to the reliability of image-derived biomarkers, trustiness in AI algorithms and privacy-related issues that hamper the validation of the biomarkers. This thesis developed methodologies to solve the presented issues, defining a road map for the responsible usage of quantitative imaging into the clinic as decision support system for better patient care
    corecore