868 research outputs found

    Casual Information Visualization on Exploring Spatiotemporal Data

    Get PDF
    The goal of this thesis is to study how the diverse data on the Web which are familiar to everyone can be visualized, and with a special consideration on their spatial and temporal information. We introduce novel approaches and visualization techniques dealing with different types of data contents: interactively browsing large amount of tags linking with geospace and time, navigating and locating spatiotemporal photos or videos in collections, and especially, providing visual supports for the exploration of diverse Web contents on arbitrary webpages in terms of augmented Web browsing

    Grounding for a computational model of place

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2006.Text printed 2 columns per page.Includes bibliographical references (leaves 66-70).Places are spatial locations that have been given meaning by human experience. The sense of a place is it's support for experiences and the emotional responses associated with them. This sense provides direction and focus for our daily lives. Physical maps and their electronic decedents deconstruct places into discrete data and require user interpretation to reconstruct the original sense of place. Is it possible to create maps that preserve this sense of place and successfully communicate it to the user? This thesis presents a model, and an application upon that model, that captures sense of place for translation, rather then requires the user to recreate it from disparate data. By grounding a human place-sense for machine interpretation, new presentations of space can be presented that more accurately mirror human cognitive conceptions. By using measures of semantic distance a user can observe the proximity of place not only in distance but also by context or association. Applications built upon this model can then construct representations that show places that are similar in feeling or reasonable destinations given the user's current location.(cont.) To accomplish this, the model attempts to understand place in the context a human might by using commonsense reasoning to analyze textual descriptions of place, and implicit statements of support for the role of these places in natural activity. It produces a semantic description of a place in terms of human action and emotion. Representations built upon these descriptions can offer powerful changes in the cognitive processing of space.Matthew Curtis Hockenberry.S.M

    Computer Vision-Based Traffic Sign Detection and Extraction: A Hybrid Approach Using GIS And Machine Learning

    Get PDF
    Traffic sign detection and positioning have drawn considerable attention because of the recent development of autonomous driving and intelligent transportation systems. In order to detect and pinpoint traffic signs accurately, this research proposes two methods. In the first method, geo-tagged Google Street View images and road networks were utilized to locate traffic signs. In the second method, both traffic signs categories and locations were identified and extracted from the location-based GoPro video. TensorFlow is the machine learning framework used to implement these two methods. To that end, 363 stop signs were detected and mapped accurately using the first method (Google Street View image-based approach). Then 32 traffic signs were recognized and pinpointed using the second method (GoPro video-based approach) for better location accuracy, within 10 meters. The average distance from the observation points to the 32 ground truth references was 7.78 meters. The advantages of these methods were discussed. GoPro video-based approach has higher location accuracy, while Google Street View image-based approach is more accessible in most major cities around the world. The proposed traffic sign detection workflow can thus extract and locate traffic signs in other cities. For further consideration and development of this research, IMU (Inertial Measurement Unit) and SLAM (Simultaneous Localization and Mapping) methods could be integrated to incorporate more data and improve location prediction accuracy

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    You are here: Building an online interactive map application

    Get PDF
    As new map applications have increased in popularity the opportunities for gathering geographic data have increased as well. The difficulty that interactive user-driven map applications have is the motivation for user participation. People have become more comfortable contributing to forums, blogs, and sites driven by user content, but user-driven map sites have been slow to cultivate a large amount of user-contributed data. Focusing on a small geographic area can increase user participation within interactive map applications. The design and implementation of an online map applications focused on a small geographic area is presented. The site uses a map interface to gather new spatial data from users, as well as allowing browsing and search. Users can also annotate existing data on the site through the map interface. The final site presents a mix between theory-based design and the inherent limitations of a practical implementation

    Developing a Framework for Stigmergic Human Collaboration with Technology Tools: Cases in Emergency Response

    Get PDF
    Information and Communications Technologies (ICTs), particularly social media and geographic information systems (GIS), have become a transformational force in emergency response. Social media enables ad hoc collaboration, providing timely, useful information dissemination and sharing, and helping to overcome limitations of time and place. Geographic information systems increase the level of situation awareness, serving geospatial data using interactive maps, animations, and computer generated imagery derived from sophisticated global remote sensing systems. Digital workspaces bring these technologies together and contribute to meeting ad hoc and formal emergency response challenges through their affordances of situation awareness and mass collaboration. Distributed ICTs that enable ad hoc emergency response via digital workspaces have arguably made traditional top-down system deployments less relevant in certain situations, including emergency response (Merrill, 2009; Heylighen, 2007a, b). Heylighen (2014, 2007a, b) theorizes that human cognitive stigmergy explains some self-organizing characteristics of ad hoc systems. Elliott (2007) identifies cognitive stigmergy as a factor in mass collaborations supported by digital workspaces. Stigmergy, a term from biology, refers to the phenomenon of self-organizing systems with agents that coordinate via perceived changes in the environment rather than direct communication. In the present research, ad hoc emergency response is examined through the lens of human cognitive stigmergy. The basic assertion is that ICTs and stigmergy together make possible highly effective ad hoc collaborations in circumstances where more typical collaborative methods break down. The research is organized into three essays: an in-depth analysis of the development and deployment of the Ushahidi emergency response software platform, a comparison of the emergency response ICTs used for emergency response during Hurricanes Katrina and Sandy, and a process model developed from the case studies and relevant academic literature is described
    corecore