344,473 research outputs found

    “I see my culture starting to disappear”: Anishinaabe perspectives on the socioecological impacts of climate change and future research needs

    Get PDF
    Climate change disproportionately affects Indigenous Peoples because of strong connections between environmental, cultural, and spiritual well-being. While much of the global discourse surrounding climate change is founded in Western science, the holistic, place-based knowledge of Indigenous Peoples offers a complementary way of understanding and mitigating climate change impacts. The goal of this research was to elevate Anishinaabe concerns, observations, and perspectives about climate change impacts and future research needs. We organized a workshop called “Connecting Guardians in a Changing World” where participants shared concerns about animal and plant life cycles, water cycles and water quality, and impacts to ways of life, including reduced capacity to perform cultural practices and erosion of their knowledge. Participants highlighted the challenge of prioritizing a single impact of climate change, emphasizing that impacts to the environment and ways of life are interconnected. Participants also expressed the need for research and policy that move beyond interdisciplinarity to include intercultural philosophy and research that better reflects Indigenous worldviews and incorporates Indigenous methodologies. Moving forward, meaningful partnerships and opportunities for knowledge sharing should be prioritized in climate change discourse to ensure solutions are generated together, with all of the tools and knowledge available

    Data management for JGOFS: Theory and design

    Get PDF
    The Joint Global Ocean Flux Study (JGOFS), currently being organized under the auspices of the Scientific Committee for Ocean Research (SCOR), is intended to be a decade long internationally coordinated program. The main goal of JGOFS is to determine and understand on a global scale the processes controlling the time-varying fluxes of carbon and associated biogenic elements in the ocean and to evaluate the related exchanges with the atmosphere, sea floor and continental boundaries. 'A long-term goal of JGOFS will be to establish strategies for observing, on long time scales, changes in ocean biogeochemical cycles in relation to climate change'. Participation from a large number of U.S. and foreign institutions is expected. JGOFS investigators have begun a set of time-series measurements and global surveys of a wide variety of biological, chemical and physical quantities, detailed process-oriented studies, satellite observations of ocean color and wind stress and modeling of the bio-geochemical processes. These experiments will generate data in amounts unprecedented in the biological and chemical communities; rapid and effortless exchange of these data will be important to the success of JGOFS

    Towards strategic design: the experience of two Colombian MSMEs

    Get PDF
    This qualitative-interpretive study reflects on the experience of two MSMEs that adapted rapidly to meet the need for protection products and maintain their production in the midst of confinement decreed by the city and country authorities, as a containment measure for the pandemic caused by the Covid-19, and where design was a key factor. The different experiences are organized taken the Product sociotechnical Cycles (PstC) model as a conceptual basis, analyzing the case studies from the organizational capabilities of industrial design, as well as from design-driven innovation. The article ends by summarizing the learnings, emphasizing the value of design with a strategic focus, in these processes of change

    Quaternary global change: review and issues(Special issue in memory of Hugues Faure)

    Get PDF
    The French National Committee of INQUA, the IGCP Project n° 459 (Carbon Cycle and Hydrology in the Paleo Terrestrial Environments),the CNRS (Centre National de la Recherche Scientifique), the CCGM (Commission de la Carte Géologique du Monde), the IRD (Institut de Recherche pour le Développement), and the BRGM (Bureau de Recherches Géologiques et Minières) have organized in June 2004 a special International Colloquium dedicated to the memory of Hugues Faure who passed away in May 2003. It was the occasion to make a review and to emphasize new results and issues on the different topics initiated by Hugues and his collaborators. It was also a chance for all his colleagues and friends to remember a rare human being and a great scientist, passionately involved in the observation and understanding of the planet, which he called “the real world”, and assuming his destiny up to the end. The Scientific committee of this colloquium has decided to publish a special issue of Global and Planetary Change with some selected papers presented during this colloquium. This GPC special issue includes some of the papers presented at this colloquium and some invited papers from scientific personalities who wished to contribute to this special volume. The general theme of the special publication in honour to Hugues Faure is the Quaternary and the Global Changes. It will focus on the global cycles and Quaternary climate (3 papers), sea-level fluctuations, tectonics and climate variations (3 papers), climate changes in terrestrial records (9 papers), and man, environment and global change (4 papers). A total of 20 contributions, including a foreword on Hugues Faure, are proposed by the participants of this colloquium

    Sea Ice Prediction Has Easy and Difficult Years

    Get PDF
    Arctic sea ice follows an annual cycle, reaching its low point in September each year. The extent of sea ice remaining at this low point has been trending downwards for decades as the Arctic warms. Around the long-term downward trend, however, there is significant variation in the minimum extent from one year to the next. Accurate forecasts of yearly conditions would have great value to Arctic residents, shipping companies, and other stakeholders and are the subject of much current research. Since 2008 the Sea Ice Outlook (SIO) (http://www.arcus.org/search-program/seaiceoutlook) organized by the Study of Environmental Arctic Change (SEARCH) (http://www.arcus.org/search-program) has invited predictions of the September Arctic sea ice minimum extent, which are contributed from the Arctic research community. Individual predictions, based on a variety of approaches, are solicited in three cycles each year in early June, July, and August. (SEARCH 2013)

    Kick control: using the attracting states arising within the sensorimotor loop of self-organized robots as motor primitives

    Full text link
    Self-organized robots may develop attracting states within the sensorimotor loop, that is within the phase space of neural activity, body, and environmental variables. Fixpoints, limit cycles, and chaotic attractors correspond in this setting to a non-moving robot, to directed, and to irregular locomotion respectively. Short higher-order control commands may hence be used to kick the system from one self-organized attractor robustly into the basin of attraction of a different attractor, a concept termed here as kick control. The individual sensorimotor states serve in this context as highly compliant motor primitives. We study different implementations of kick control for the case of simulated and real-world wheeled robots, for which the dynamics of the distinct wheels is generated independently by local feedback loops. The feedback loops are mediated by rate-encoding neurons disposing exclusively of propriosensoric inputs in terms of projections of the actual rotational angle of the wheel. The changes of the neural activity are then transmitted into a rotational motion by a simulated transmission rod akin to the transmission rods used for steam locomotives. We find that the self-organized attractor landscape may be morphed both by higher-level control signals, in the spirit of kick control, and by interacting with the environment. Bumping against a wall destroys the limit cycle corresponding to forward motion, with the consequence that the dynamical variables are then attracted in phase space by the limit cycle corresponding to backward moving. The robot, which does not dispose of any distance or contact sensors, hence reverses direction autonomously.Comment: 17 pages, 9 figure

    Magnetic Cycles in a Convective Dynamo Simulation of a Young Solar-type Star

    Get PDF
    Young solar-type stars rotate rapidly and many are magnetically active; some undergo magnetic cycles similar to the 22-year solar activity cycle. We conduct simulations of dynamo action in rapidly rotating suns with the 3D MHD anelastic spherical harmonic (ASH) code to explore dynamo action achieved in the convective envelope of a solar-type star rotating at 5 times the current solar rotation rate. Striking global-scale magnetic wreaths appear in the midst of the turbulent convection zone and show rich time-dependence. The dynamo exhibits cyclic activity and undergoes quasi-periodic polarity reversals where both the global-scale poloidal and toroidal fields change in sense on a roughly 1500 day time scale. These magnetic activity patterns emerge spontaneously from the turbulent flow and are more organized temporally and spatially than those realized in our previous simulations of the solar dynamo. We assess in detail the competing processes of magnetic field creation and destruction within our simulations that contribute to the global-scale reversals. We find that the mean toroidal fields are built primarily through an Ω\Omega-effect, while the mean poloidal fields are built by turbulent correlations which are not necessarily well represented by a simple α\alpha-effect. During a reversal the magnetic wreaths propagate towards the polar regions, and this appears to arise from a poleward propagating dynamo wave. The primary response in the convective flows involves the axisymmetric differential rotation which shows variations associated with the poleward propagating magnetic wreaths. In the Sun, similar patterns are observed in the poleward branch of the torsional oscillations, and these may represent poleward propagating magnetic fields deep below the solar surface. [abridged]Comment: 20 pages, 14 figures, emulateapj format; accepted for publication in ApJ. Expanded and published version of sections 5-6 from http://arxiv.org/abs/0906.240

    Improvement Research Carried Out Through Networked Communities: Accelerating Learning about Practices that Support More Productive Student Mindsets

    Get PDF
    The research on academic mindsets shows significant promise for addressing important problems facing educators. However, the history of educational reform is replete with good ideas for improvement that fail to realize the promises that accompany their introduction. As a field, we are quick to implement new ideas but slow to learn how to execute well on them. If we continue to implement reform as we always have, we will continue to get what we have always gotten. Accelerating the field's capacity to learn in and through practice to improve is one key to transforming the good ideas discussed at the White House meeting into tools, interventions, and professional development initiatives that achieve effectiveness reliably at scale. Toward this end, this paper discusses the function of networked communities engaged in improvement research and illustrates the application of these ideas in promoting greater student success in community colleges. Specifically, this white paper:* Introduces improvement research and networked communities as ideas that we believe can enhance educators' capacities to advance positive change. * Explains why improvement research requires a different kind of measures -- what we call practical measurement -- that are distinct from those commonly used by schools for accountability or by researchers for theory development.* Illustrates through a case study how systematic improvement work to promote student mindsets can be carried out. The case is based on the Carnegie Foundation's effort to address the poor success rates for students in developmental math at community colleges.Specifically, this case details:- How a practical theory and set of practical measures were created to assess the causes of "productive persistence" -- the set of "non-cognitive factors" thought to powerfully affect community college student success. In doing this work, a broad set of potential factors was distilled into a digestible framework that was useful topractitioners working with researchers, and a large set of potential measures was reduced to a practical (3-minute) set of assessments.- How these measures were used by researchers and practitioners for practical purposes -- specifically, to assess changes, predict which students were at-risk for course failure, and set priorities for improvement work.-How we organized researchersto work with practitioners to accelerate field-based experimentation on everyday practices that promote academic mindsets(what we call alpha labs), and how we organized practitioners to work with researchers to test, revise, refine, and iteratively improve their everyday practices (using plando-study-act cycles).While significant progress has already occurred, robust, practical, reliable efforts to improve students' mindsets remains at an early formative stage. We hope the ideas presented here are an instructive starting point for new efforts that might attempt to address other problems facing educators, most notably issues of inequality and underperformance in K-12 settings
    • …
    corecore