17,003 research outputs found

    Multirelational Organization of Large-scale Social Networks in an Online World

    Full text link
    The capacity to collect fingerprints of individuals in online media has revolutionized the way researchers explore human society. Social systems can be seen as a non-linear superposition of a multitude of complex social networks, where nodes represent individuals and links capture a variety of different social relations. Much emphasis has been put on the network topology of social interactions, however, the multi-dimensional nature of these interactions has largely been ignored in empirical studies, mostly because of lack of data. Here, for the first time, we analyze a complete, multi-relational, large social network of a society consisting of the 300,000 odd players of a massive multiplayer online game. We extract networks of six different types of one-to-one interactions between the players. Three of them carry a positive connotation (friendship, communication, trade), three a negative (enmity, armed aggression, punishment). We first analyze these types of networks as separate entities and find that negative interactions differ from positive interactions by their lower reciprocity, weaker clustering and fatter-tail degree distribution. We then proceed to explore how the inter-dependence of different network types determines the organization of the social system. In particular we study correlations and overlap between different types of links and demonstrate the tendency of individuals to play different roles in different networks. As a demonstration of the power of the approach we present the first empirical large-scale verification of the long-standing structural balance theory, by focusing on the specific multiplex network of friendship and enmity relations.Comment: 7 pages, 5 figures, accepted for publication in PNA

    Interbank markets and multiplex networks: centrality measures and statistical null models

    Full text link
    The interbank market is considered one of the most important channels of contagion. Its network representation, where banks and claims/obligations are represented by nodes and links (respectively), has received a lot of attention in the recent theoretical and empirical literature, for assessing systemic risk and identifying systematically important financial institutions. Different types of links, for example in terms of maturity and collateralization of the claim/obligation, can be established between financial institutions. Therefore a natural representation of the interbank structure which takes into account more features of the market, is a multiplex, where each layer is associated with a type of link. In this paper we review the empirical structure of the multiplex and the theoretical consequences of this representation. We also investigate the betweenness and eigenvector centrality of a bank in the network, comparing its centrality properties across different layers and with Maximum Entropy null models.Comment: To appear in the book "Interconnected Networks", A. Garas e F. Schweitzer (eds.), Springer Complexity Serie

    Identifying modular flows on multilayer networks reveals highly overlapping organization in social systems

    Full text link
    Unveiling the community structure of networks is a powerful methodology to comprehend interconnected systems across the social and natural sciences. To identify different types of functional modules in interaction data aggregated in a single network layer, researchers have developed many powerful methods. For example, flow-based methods have proven useful for identifying modular dynamics in weighted and directed networks that capture constraints on flow in the systems they represent. However, many networked systems consist of agents or components that exhibit multiple layers of interactions. Inevitably, representing this intricate network of networks as a single aggregated network leads to information loss and may obscure the actual organization. Here we propose a method based on compression of network flows that can identify modular flows in non-aggregated multilayer networks. Our numerical experiments on synthetic networks show that the method can accurately identify modules that cannot be identified in aggregated networks or by analyzing the layers separately. We capitalize on our findings and reveal the community structure of two multilayer collaboration networks: scientists affiliated to the Pierre Auger Observatory and scientists publishing works on networks on the arXiv. Compared to conventional aggregated methods, the multilayer method reveals smaller modules with more overlap that better capture the actual organization

    MuxViz: A Tool for Multilayer Analysis and Visualization of Networks

    Full text link
    Multilayer relationships among entities and information about entities must be accompanied by the means to analyze, visualize, and obtain insights from such data. We present open-source software (muxViz) that contains a collection of algorithms for the analysis of multilayer networks, which are an important way to represent a large variety of complex systems throughout science and engineering. We demonstrate the ability of muxViz to analyze and interactively visualize multilayer data using empirical genetic, neuronal, and transportation networks. Our software is available at https://github.com/manlius/muxViz.Comment: 18 pages, 10 figures (text of the accepted manuscript

    Multilayer Network of Language: a Unified Framework for Structural Analysis of Linguistic Subsystems

    Get PDF
    Recently, the focus of complex networks research has shifted from the analysis of isolated properties of a system toward a more realistic modeling of multiple phenomena - multilayer networks. Motivated by the prosperity of multilayer approach in social, transport or trade systems, we propose the introduction of multilayer networks for language. The multilayer network of language is a unified framework for modeling linguistic subsystems and their structural properties enabling the exploration of their mutual interactions. Various aspects of natural language systems can be represented as complex networks, whose vertices depict linguistic units, while links model their relations. The multilayer network of language is defined by three aspects: the network construction principle, the linguistic subsystem and the language of interest. More precisely, we construct a word-level (syntax, co-occurrence and its shuffled counterpart) and a subword level (syllables and graphemes) network layers, from five variations of original text (in the modeled language). The obtained results suggest that there are substantial differences between the networks structures of different language subsystems, which are hidden during the exploration of an isolated layer. The word-level layers share structural properties regardless of the language (e.g. Croatian or English), while the syllabic subword level expresses more language dependent structural properties. The preserved weighted overlap quantifies the similarity of word-level layers in weighted and directed networks. Moreover, the analysis of motifs reveals a close topological structure of the syntactic and syllabic layers for both languages. The findings corroborate that the multilayer network framework is a powerful, consistent and systematic approach to model several linguistic subsystems simultaneously and hence to provide a more unified view on language
    corecore