2,083 research outputs found

    Levels of discontinuity, limit-computability, and jump operators

    Full text link
    We develop a general theory of jump operators, which is intended to provide an abstraction of the notion of "limit-computability" on represented spaces. Jump operators also provide a framework with a strong categorical flavor for investigating degrees of discontinuity of functions and hierarchies of sets on represented spaces. We will provide a thorough investigation within this framework of a hierarchy of Δ20\Delta^0_2-measurable functions between arbitrary countably based T0T_0-spaces, which captures the notion of computing with ordinal mind-change bounds. Our abstract approach not only raises new questions but also sheds new light on previous results. For example, we introduce a notion of "higher order" descriptive set theoretical objects, we generalize a recent characterization of the computability theoretic notion of "lowness" in terms of adjoint functors, and we show that our framework encompasses ordinal quantifications of the non-constructiveness of Hilbert's finite basis theorem

    Generalized Effective Reducibility

    Full text link
    We introduce two notions of effective reducibility for set-theoretical statements, based on computability with Ordinal Turing Machines (OTMs), one of which resembles Turing reducibility while the other is modelled after Weihrauch reducibility. We give sample applications by showing that certain (algebraic) constructions are not effective in the OTM-sense and considerung the effective equivalence of various versions of the axiom of choice

    Towards a Church-Turing-Thesis for Infinitary Computations

    Full text link
    We consider the question whether there is an infinitary analogue of the Church-Turing-thesis. To this end, we argue that there is an intuitive notion of transfinite computability and build a canonical model, called Idealized Agent Machines (IAMIAMs) of this which will turn out to be equivalent in strength to the Ordinal Turing Machines defined by P. Koepke

    The Veblen functions for computability theorists

    Full text link
    We study the computability-theoretic complexity and proof-theoretic strength of the following statements: (1) "If X is a well-ordering, then so is epsilon_X", and (2) "If X is a well-ordering, then so is phi(alpha,X)", where alpha is a fixed computable ordinal and phi the two-placed Veblen function. For the former statement, we show that omega iterations of the Turing jump are necessary in the proof and that the statement is equivalent to ACA_0^+ over RCA_0. To prove the latter statement we need to use omega^alpha iterations of the Turing jump, and we show that the statement is equivalent to Pi^0_{omega^alpha}-CA_0. Our proofs are purely computability-theoretic. We also give a new proof of a result of Friedman: the statement "if X is a well-ordering, then so is phi(X,0)" is equivalent to ATR_0 over RCA_0.Comment: 26 pages, 3 figures, to appear in Journal of Symbolic Logi

    Infinite computations with random oracles

    Full text link
    We consider the following problem for various infinite time machines. If a real is computable relative to large set of oracles such as a set of full measure or just of positive measure, a comeager set, or a nonmeager Borel set, is it already computable? We show that the answer is independent from ZFC for ordinal time machines (OTMs) with and without ordinal parameters and give a positive answer for most other machines. For instance, we consider, infinite time Turing machines (ITTMs), unresetting and resetting infinite time register machines (wITRMs, ITRMs), and \alpha-Turing machines for countable admissible ordinals \alpha

    Infinite time Turing machines and an application to the hierarchy of equivalence relations on the reals

    Full text link
    We describe the basic theory of infinite time Turing machines and some recent developments, including the infinite time degree theory, infinite time complexity theory, and infinite time computable model theory. We focus particularly on the application of infinite time Turing machines to the analysis of the hierarchy of equivalence relations on the reals, in analogy with the theory arising from Borel reducibility. We define a notion of infinite time reducibility, which lifts much of the Borel theory into the class Δ21\bm{\Delta}^1_2 in a satisfying way.Comment: Submitted to the Effective Mathematics of the Uncountable Conference, 200
    • …
    corecore