726 research outputs found

    Decision-Making in Autonomous Driving using Reinforcement Learning

    Get PDF
    The main topic of this thesis is tactical decision-making for autonomous driving. An autonomous vehicle must be able to handle a diverse set of environments and traffic situations, which makes it hard to manually specify a suitable behavior for every possible scenario. Therefore, learning-based strategies are considered in this thesis, which introduces different approaches based on reinforcement learning (RL). A general decision-making agent, derived from the Deep Q-Network (DQN) algorithm, is proposed. With few modifications, this method can be applied to different driving environments, which is demonstrated for various simulated highway and intersection scenarios. A more sample efficient agent can be obtained by incorporating more domain knowledge, which is explored by combining planning and learning in the form of Monte Carlo tree search and RL. In different highway scenarios, the combined method outperforms using either a planning or a learning-based strategy separately, while requiring an order of magnitude fewer training samples than the DQN method. A drawback of many learning-based approaches is that they create black-box solutions, which do not indicate the confidence of the agent\u27s decisions. Therefore, the Ensemble Quantile Networks (EQN) method is introduced, which combines distributional RL with an ensemble approach, to provide an estimate of both the aleatoric and the epistemic uncertainty of each decision. The results show that the EQN method can balance risk and time efficiency in different occluded intersection scenarios, while also identifying situations that the agent has not been trained for. Thereby, the agent can avoid making unfounded, potentially dangerous, decisions outside of the training distribution. Finally, this thesis introduces a neural network architecture that is invariant to permutations of the order in which surrounding vehicles are listed. This architecture improves the sample efficiency of the agent by the factorial of the number of surrounding vehicles

    Behaviour, Development and Evolution

    Get PDF
    "The role of parents in shaping the characters of their children, the causes of violence and crime, and the roots of personal unhappiness are central to humanity. Like so many fundamental questions about human existence, these issues all relate to behavioural development. In this lucid and accessible book, eminent biologist Professor Sir Patrick Bateson suggests that the nature/nurture dichotomy we often use to think about questions of development in both humans and animals is misleading. Instead, he argues that we should pay attention to whole systems, rather than to simple causes, when trying to understand the complexity of development. In his wide-ranging approach Bateson discusses why so much behaviour appears to be well- designed. He explores issues such as ‘imprinting’ and its importance to the attachment of offspring to their parents; the mutual benefits that characterise communication between parent and offspring; the importance of play in learning how to choose and control the optimal conditions in which to thrive; and the vital function of adaptability in the interplay between development and evolution. Bateson disputes the idea that a simple link can be found between genetics and behaviour. What an individual human or animal does in its life depends on the reciprocal character of its transactions with the world about it. This knowledge also points to ways in which an animal's own behaviour can provide the variation that influences the subsequent course of evolution. This has relevance not only for our scientific approaches to the systems of development and evolution, but also on how humans change institutional rules that have become dysfunctional, or design public health measures when mismatches occur between themselves and their environments. It affects how we think about ourselves and our own capacity for change.

    Learning search decisions

    Get PDF

    A Field Guide to Genetic Programming

    Get PDF
    xiv, 233 p. : il. ; 23 cm.Libro ElectrónicoA Field Guide to Genetic Programming (ISBN 978-1-4092-0073-4) is an introduction to genetic programming (GP). GP is a systematic, domain-independent method for getting computers to solve problems automatically starting from a high-level statement of what needs to be done. Using ideas from natural evolution, GP starts from an ooze of random computer programs, and progressively refines them through processes of mutation and sexual recombination, until solutions emerge. All this without the user having to know or specify the form or structure of solutions in advance. GP has generated a plethora of human-competitive results and applications, including novel scientific discoveries and patentable inventions. The authorsIntroduction -- Representation, initialisation and operators in Tree-based GP -- Getting ready to run genetic programming -- Example genetic programming run -- Alternative initialisations and operators in Tree-based GP -- Modular, grammatical and developmental Tree-based GP -- Linear and graph genetic programming -- Probalistic genetic programming -- Multi-objective genetic programming -- Fast and distributed genetic programming -- GP theory and its applications -- Applications -- Troubleshooting GP -- Conclusions.Contents xi 1 Introduction 1.1 Genetic Programming in a Nutshell 1.2 Getting Started 1.3 Prerequisites 1.4 Overview of this Field Guide I Basics 2 Representation, Initialisation and GP 2.1 Representation 2.2 Initialising the Population 2.3 Selection 2.4 Recombination and Mutation Operators in Tree-based 3 Getting Ready to Run Genetic Programming 19 3.1 Step 1: Terminal Set 19 3.2 Step 2: Function Set 20 3.2.1 Closure 21 3.2.2 Sufficiency 23 3.2.3 Evolving Structures other than Programs 23 3.3 Step 3: Fitness Function 24 3.4 Step 4: GP Parameters 26 3.5 Step 5: Termination and solution designation 27 4 Example Genetic Programming Run 4.1 Preparatory Steps 29 4.2 Step-by-Step Sample Run 31 4.2.1 Initialisation 31 4.2.2 Fitness Evaluation Selection, Crossover and Mutation Termination and Solution Designation Advanced Genetic Programming 5 Alternative Initialisations and Operators in 5.1 Constructing the Initial Population 5.1.1 Uniform Initialisation 5.1.2 Initialisation may Affect Bloat 5.1.3 Seeding 5.2 GP Mutation 5.2.1 Is Mutation Necessary? 5.2.2 Mutation Cookbook 5.3 GP Crossover 5.4 Other Techniques 32 5.5 Tree-based GP 39 6 Modular, Grammatical and Developmental Tree-based GP 47 6.1 Evolving Modular and Hierarchical Structures 47 6.1.1 Automatically Defined Functions 48 6.1.2 Program Architecture and Architecture-Altering 50 6.2 Constraining Structures 51 6.2.1 Enforcing Particular Structures 52 6.2.2 Strongly Typed GP 52 6.2.3 Grammar-based Constraints 53 6.2.4 Constraints and Bias 55 6.3 Developmental Genetic Programming 57 6.4 Strongly Typed Autoconstructive GP with PushGP 59 7 Linear and Graph Genetic Programming 61 7.1 Linear Genetic Programming 61 7.1.1 Motivations 61 7.1.2 Linear GP Representations 62 7.1.3 Linear GP Operators 64 7.2 Graph-Based Genetic Programming 65 7.2.1 Parallel Distributed GP (PDGP) 65 7.2.2 PADO 67 7.2.3 Cartesian GP 67 7.2.4 Evolving Parallel Programs using Indirect Encodings 68 8 Probabilistic Genetic Programming 8.1 Estimation of Distribution Algorithms 69 8.2 Pure EDA GP 71 8.3 Mixing Grammars and Probabilities 74 9 Multi-objective Genetic Programming 75 9.1 Combining Multiple Objectives into a Scalar Fitness Function 75 9.2 Keeping the Objectives Separate 76 9.2.1 Multi-objective Bloat and Complexity Control 77 9.2.2 Other Objectives 78 9.2.3 Non-Pareto Criteria 80 9.3 Multiple Objectives via Dynamic and Staged Fitness Functions 80 9.4 Multi-objective Optimisation via Operator Bias 81 10 Fast and Distributed Genetic Programming 83 10.1 Reducing Fitness Evaluations/Increasing their Effectiveness 83 10.2 Reducing Cost of Fitness with Caches 86 10.3 Parallel and Distributed GP are Not Equivalent 88 10.4 Running GP on Parallel Hardware 89 10.4.1 Master–slave GP 89 10.4.2 GP Running on GPUs 90 10.4.3 GP on FPGAs 92 10.4.4 Sub-machine-code GP 93 10.5 Geographically Distributed GP 93 11 GP Theory and its Applications 97 11.1 Mathematical Models 98 11.2 Search Spaces 99 11.3 Bloat 101 11.3.1 Bloat in Theory 101 11.3.2 Bloat Control in Practice 104 III Practical Genetic Programming 12 Applications 12.1 Where GP has Done Well 12.2 Curve Fitting, Data Modelling and Symbolic Regression 12.3 Human Competitive Results – the Humies 12.4 Image and Signal Processing 12.5 Financial Trading, Time Series, and Economic Modelling 12.6 Industrial Process Control 12.7 Medicine, Biology and Bioinformatics 12.8 GP to Create Searchers and Solvers – Hyper-heuristics xiii 12.9 Entertainment and Computer Games 127 12.10The Arts 127 12.11Compression 128 13 Troubleshooting GP 13.1 Is there a Bug in the Code? 13.2 Can you Trust your Results? 13.3 There are No Silver Bullets 13.4 Small Changes can have Big Effects 13.5 Big Changes can have No Effect 13.6 Study your Populations 13.7 Encourage Diversity 13.8 Embrace Approximation 13.9 Control Bloat 13.10 Checkpoint Results 13.11 Report Well 13.12 Convince your Customers 14 Conclusions Tricks of the Trade A Resources A.1 Key Books A.2 Key Journals A.3 Key International Meetings A.4 GP Implementations A.5 On-Line Resources 145 B TinyGP 151 B.1 Overview of TinyGP 151 B.2 Input Data Files for TinyGP 153 B.3 Source Code 154 B.4 Compiling and Running TinyGP 162 Bibliography 167 Inde

    Evolutionary program induction directed by logic grammars.

    Get PDF
    by Wong Man Leung.Thesis (Ph.D.)--Chinese University of Hong Kong, 1995.Includes bibliographical references (leaves 227-236).List of Figures --- p.iiiList of Tables --- p.viChapter Chapter 1 : --- Introduction --- p.1Chapter 1.1. --- Automatic programming and program induction --- p.1Chapter 1.2. --- Motivation --- p.6Chapter 1.3. --- Contributions of the research --- p.8Chapter 1.4. --- Outline of the thesis --- p.11Chapter Chapter 2 : --- An Overview of Evolutionary Algorithms --- p.13Chapter 2.1. --- Evolutionary algorithms --- p.13Chapter 2.2. --- Genetic Algorithms (GAs) --- p.15Chapter 2.2.1. --- The canonical genetic algorithm --- p.16Chapter 2.2.1.1. --- Selection methods --- p.21Chapter 2.2.1.2. --- Recombination methods --- p.24Chapter 2.2.1.3. --- Inversion and Reordering --- p.27Chapter 2.2.2. --- Implicit parallelism and the building block hypothesis --- p.28Chapter 2.2.3. --- Steady state genetic algorithms --- p.32Chapter 2.2.4. --- Hybrid algorithms --- p.33Chapter 2.3. --- Genetic Programming (GP) --- p.34Chapter 2.3.1. --- Introduction to the traditional GP --- p.34Chapter 2.3.2. --- Automatic Defined Function (ADF) --- p.41Chapter 2.3.3. --- Module Acquisition (MA) --- p.44Chapter 2.3.4. --- Strongly Typed Genetic Programming (STGP) --- p.49Chapter 2.4. --- Evolution Strategies (ES) --- p.50Chapter 2.5. --- Evolutionary Programming (EP) --- p.55Chapter Chapter 3 : --- Inductive Logic Programming --- p.59Chapter 3.1. --- Inductive concept learning --- p.59Chapter 3.2. --- Inductive Logic Programming (ILP) --- p.62Chapter 3.2.1. --- Interactive ILP --- p.64Chapter 3.2.2. --- Empirical ILP --- p.65Chapter 3.3. --- Techniques and methods of ILP --- p.67Chapter Chapter 4 : --- Genetic Logic Programming and Applications --- p.74Chapter 4.1. --- Introduction --- p.74Chapter 4.2. --- Representations of logic programs --- p.76Chapter 4.3. --- Crossover of logic programs --- p.81Chapter 4.4. --- Genetic Logic Programming System (GLPS) --- p.87Chapter 4.5. --- Applications --- p.90Chapter 4.5.1. --- The Winston's arch problem --- p.91Chapter 4.5.2. --- The modified Quinlan's network reachability problem --- p.92Chapter 4.5.3. --- The factorial problem --- p.95Chapter Chapter 5 : --- The logic grammars based genetic programming system (LOGENPRO) --- p.100Chapter 5.1. --- Logic grammars --- p.101Chapter 5.2. --- Representations of programs --- p.103Chapter 5.3. --- Crossover of programs --- p.111Chapter 5.4. --- Mutation of programs --- p.126Chapter 5.5. --- The evolution process of LOGENPRO --- p.130Chapter 5.6. --- Discussion --- p.132Chapter Chapter 6 : --- Applications of LOGENPRO --- p.134Chapter 6.1. --- Learning functional programs --- p.134Chapter 6.1.1. --- Learning S-expressions using LOGENPRO --- p.134Chapter 6.1.2. --- The DOT PRODUCT problem --- p.137Chapter 6.1.2. --- Learning sub-functions using explicit knowledge --- p.143Chapter 6.2. --- Learning logic programs --- p.148Chapter 6.2.1. --- Learning logic programs using LOGENPRO --- p.148Chapter 6.2.2. --- The Winston's arch problem --- p.151Chapter 6.2.3. --- The modified Quinlan's network reachability problem --- p.153Chapter 6.2.4. --- The factorial problem --- p.154Chapter 6.2.5. --- Discussion --- p.155Chapter 6.3. --- Learning programs in C --- p.155Chapter Chapter 7 : --- Knowledge Discovery in Databases --- p.159Chapter 7.1. --- Inducing decision trees using LOGENPRO --- p.160Chapter 7.1.1. --- Decision trees --- p.160Chapter 7.1.2. --- Representing decision trees as S-expressions --- p.164Chapter 7.1.3. --- The credit screening problem --- p.166Chapter 7.1.4. --- The experiment --- p.168Chapter 7.2. --- Learning logic program from imperfect data --- p.174Chapter 7.2.1. --- The chess endgame problem --- p.177Chapter 7.2.2. --- The setup of experiments --- p.178Chapter 7.2.3. --- Comparison of LOGENPRO with FOIL --- p.180Chapter 7.2.4. --- Comparison of LOGENPRO with BEAM-FOIL --- p.182Chapter 7.2.5. --- Comparison of LOGENPRO with mFOILl --- p.183Chapter 7.2.6. --- Comparison of LOGENPRO with mFOIL2 --- p.184Chapter 7.2.7. --- Comparison of LOGENPRO with mFOIL3 --- p.185Chapter 7.2.8. --- Comparison of LOGENPRO with mFOIL4 --- p.186Chapter 7.2.9. --- Comparison of LOGENPRO with mFOIL5 --- p.187Chapter 7.2.10. --- Discussion --- p.188Chapter 7.3. --- Learning programs in Fuzzy Prolog --- p.189Chapter Chapter 8 : --- An Adaptive Inductive Logic Programming System --- p.192Chapter 8.1. --- Adaptive Inductive Logic Programming --- p.192Chapter 8.2. --- A generic top-down ILP algorithm --- p.196Chapter 8.3. --- Inducing procedural search biases --- p.200Chapter 8.3.1. --- The evolution process --- p.201Chapter 8.3.2. --- The experimentation setup --- p.202Chapter 8.3.3. --- Fitness calculation --- p.203Chapter 8.4. --- Experimentation and evaluations --- p.204Chapter 8.4.1. --- The member predicate --- p.205Chapter 8.4.2. --- The member predicate in a noisy environment --- p.205Chapter 8.4.3. --- The multiply predicate --- p.206Chapter 8.4.4. --- The uncle predicate --- p.207Chapter 8.5. --- Discussion --- p.208Chapter Chapter 9 : --- Conclusion and Future Work --- p.210Chapter 9.1. --- Conclusion --- p.210Chapter 9.2. --- Future work --- p.217Chapter 9.2.1. --- Applying LOGENPRO to discover knowledge from databases --- p.217Chapter 9.2.2. --- Learning recursive programs --- p.218Chapter 9.2.3. --- Applying LOGENPRO in engineering design --- p.220Chapter 9.2.4. --- Exploiting parallelism of evolutionary algorithms --- p.222Reference --- p.227Appendix A --- p.23

    A Survey on In-context Learning

    Full text link
    With the increasing ability of large language models (LLMs), in-context learning (ICL) has become a new paradigm for natural language processing (NLP), where LLMs make predictions only based on contexts augmented with a few examples. It has been a new trend to explore ICL to evaluate and extrapolate the ability of LLMs. In this paper, we aim to survey and summarize the progress and challenges of ICL. We first present a formal definition of ICL and clarify its correlation to related studies. Then, we organize and discuss advanced techniques, including training strategies, demonstration designing strategies, as well as related analysis. Finally, we discuss the challenges of ICL and provide potential directions for further research. We hope that our work can encourage more research on uncovering how ICL works and improving ICL.Comment: Papers collected until 2023/05/2

    Towards Thompson Sampling for Complex Bayesian Reasoning

    Get PDF
    Paper III, IV, and VI are not available as a part of the dissertation due to the copyright.Thompson Sampling (TS) is a state-of-art algorithm for bandit problems set in a Bayesian framework. Both the theoretical foundation and the empirical efficiency of TS is wellexplored for plain bandit problems. However, the Bayesian underpinning of TS means that TS could potentially be applied to other, more complex, problems as well, beyond the bandit problem, if suitable Bayesian structures can be found. The objective of this thesis is the development and analysis of TS-based schemes for more complex optimization problems, founded on Bayesian reasoning. We address several complex optimization problems where the previous state-of-art relies on a relatively myopic perspective on the problem. These includes stochastic searching on the line, the Goore game, the knapsack problem, travel time estimation, and equipartitioning. Instead of employing Bayesian reasoning to obtain a solution, they rely on carefully engineered rules. In all brevity, we recast each of these optimization problems in a Bayesian framework, introducing dedicated TS based solution schemes. For all of the addressed problems, the results show that besides being more effective, the TS based approaches we introduce are also capable of solving more adverse versions of the problems, such as dealing with stochastic liars.publishedVersio

    Artificial general intelligence: Proceedings of the Second Conference on Artificial General Intelligence, AGI 2009, Arlington, Virginia, USA, March 6-9, 2009

    Get PDF
    Artificial General Intelligence (AGI) research focuses on the original and ultimate goal of AI – to create broad human-like and transhuman intelligence, by exploring all available paths, including theoretical and experimental computer science, cognitive science, neuroscience, and innovative interdisciplinary methodologies. Due to the difficulty of this task, for the last few decades the majority of AI researchers have focused on what has been called narrow AI – the production of AI systems displaying intelligence regarding specific, highly constrained tasks. In recent years, however, more and more researchers have recognized the necessity – and feasibility – of returning to the original goals of the field. Increasingly, there is a call for a transition back to confronting the more difficult issues of human level intelligence and more broadly artificial general intelligence
    • …
    corecore