12,238 research outputs found

    The Price of Order

    Full text link
    We present tight bounds on the spanning ratio of a large family of ordered θ\theta-graphs. A θ\theta-graph partitions the plane around each vertex into mm disjoint cones, each having aperture θ=2π/m\theta = 2 \pi/m. An ordered θ\theta-graph is constructed by inserting the vertices one by one and connecting each vertex to the closest previously-inserted vertex in each cone. We show that for any integer k1k \geq 1, ordered θ\theta-graphs with 4k+44k + 4 cones have a tight spanning ratio of 1+2sin(θ/2)/(cos(θ/2)sin(θ/2))1 + 2 \sin(\theta/2) / (\cos(\theta/2) - \sin(\theta/2)). We also show that for any integer k2k \geq 2, ordered θ\theta-graphs with 4k+24k + 2 cones have a tight spanning ratio of 1/(12sin(θ/2))1 / (1 - 2 \sin(\theta/2)). We provide lower bounds for ordered θ\theta-graphs with 4k+34k + 3 and 4k+54k + 5 cones. For ordered θ\theta-graphs with 4k+24k + 2 and 4k+54k + 5 cones these lower bounds are strictly greater than the worst case spanning ratios of their unordered counterparts. These are the first results showing that ordered θ\theta-graphs have worse spanning ratios than unordered θ\theta-graphs. Finally, we show that, unlike their unordered counterparts, the ordered θ\theta-graphs with 4, 5, and 6 cones are not spanners

    Spanning Properties of Theta-Theta Graphs

    Full text link
    We study the spanning properties of Theta-Theta graphs. Similar in spirit with the Yao-Yao graphs, Theta-Theta graphs partition the space around each vertex into a set of k cones, for some fixed integer k > 1, and select at most one edge per cone. The difference is in the way edges are selected. Yao-Yao graphs select an edge of minimum length, whereas Theta-Theta graphs select an edge of minimum orthogonal projection onto the cone bisector. It has been established that the Yao-Yao graphs with parameter k = 6k' have spanning ratio 11.67, for k' >= 6. In this paper we establish a first spanning ratio of 7.827.82 for Theta-Theta graphs, for the same values of kk. We also extend the class of Theta-Theta spanners with parameter 6k', and establish a spanning ratio of 16.7616.76 for k' >= 5. We surmise that these stronger results are mainly due to a tighter analysis in this paper, rather than Theta-Theta being superior to Yao-Yao as a spanner. We also show that the spanning ratio of Theta-Theta graphs decreases to 4.64 as k' increases to 8. These are the first results on the spanning properties of Theta-Theta graphs.Comment: 20 pages, 6 figures, 3 table

    Trajectory Planning on Grids: Considering Speed Limit Constraints

    Get PDF
    Trajectory (path) planning is a well known and thoroughly studied field of automated planning. It is usually used in computer games, robotics or autonomous agent simulations. Grids are often used for regular discretization of continuous space. Many methods exist for trajectory (path) planning on grids, we address the well known A* algorithm and the state-of-the-art Theta* algorithm. Theta* algorithm, as opposed to A*, provides ‘any-angle‘ paths that look more realistic. In this paper, we provide an extension of both these algorithms to enable support for speed limit constraints.We experimentally evaluate and thoroughly discuss how the extensions affect the planning process showing reasonability and justification of our approach
    corecore