20,922 research outputs found

    Exploratory Analysis of Functional Data via Clustering and Optimal Segmentation

    Full text link
    We propose in this paper an exploratory analysis algorithm for functional data. The method partitions a set of functions into KK clusters and represents each cluster by a simple prototype (e.g., piecewise constant). The total number of segments in the prototypes, PP, is chosen by the user and optimally distributed among the clusters via two dynamic programming algorithms. The practical relevance of the method is shown on two real world datasets

    Learning Rich Geographical Representations: Predicting Colorectal Cancer Survival in the State of Iowa

    Full text link
    Neural networks are capable of learning rich, nonlinear feature representations shown to be beneficial in many predictive tasks. In this work, we use these models to explore the use of geographical features in predicting colorectal cancer survival curves for patients in the state of Iowa, spanning the years 1989 to 2012. Specifically, we compare model performance using a newly defined metric -- area between the curves (ABC) -- to assess (a) whether survival curves can be reasonably predicted for colorectal cancer patients in the state of Iowa, (b) whether geographical features improve predictive performance, and (c) whether a simple binary representation or richer, spectral clustering-based representation perform better. Our findings suggest that survival curves can be reasonably estimated on average, with predictive performance deviating at the five-year survival mark. We also find that geographical features improve predictive performance, and that the best performance is obtained using richer, spectral analysis-elicited features.Comment: 8 page

    Crystallization and melting of bacteria colonies and Brownian Bugs

    Get PDF
    Motivated by the existence of remarkably ordered cluster arrays of bacteria colonies growing in Petri dishes and related problems, we study the spontaneous emergence of clustering and patterns in a simple nonequilibrium system: the individual-based interacting Brownian bug model. We map this discrete model into a continuous Langevin equation which is the starting point for our extensive numerical analyses. For the two-dimensional case we report on the spontaneous generation of localized clusters of activity as well as a melting/freezing transition from a disordered or isotropic phase to an ordered one characterized by hexagonal patterns. We study in detail the analogies and differences with the well-established Kosterlitz-Thouless-Halperin-Nelson-Young theory of equilibrium melting, as well as with another competing theory. For that, we study translational and orientational correlations and perform a careful defect analysis. We find a non standard one-stage, defect-mediated, transition whose nature is only partially elucidated.Comment: 13 Figures. 14 pages. Submitted to Phys. Rev.

    Slingshot: cell lineage and pseudotime inference for single-cell transcriptomics.

    Get PDF
    BackgroundSingle-cell transcriptomics allows researchers to investigate complex communities of heterogeneous cells. It can be applied to stem cells and their descendants in order to chart the progression from multipotent progenitors to fully differentiated cells. While a variety of statistical and computational methods have been proposed for inferring cell lineages, the problem of accurately characterizing multiple branching lineages remains difficult to solve.ResultsWe introduce Slingshot, a novel method for inferring cell lineages and pseudotimes from single-cell gene expression data. In previously published datasets, Slingshot correctly identifies the biological signal for one to three branching trajectories. Additionally, our simulation study shows that Slingshot infers more accurate pseudotimes than other leading methods.ConclusionsSlingshot is a uniquely robust and flexible tool which combines the highly stable techniques necessary for noisy single-cell data with the ability to identify multiple trajectories. Accurate lineage inference is a critical step in the identification of dynamic temporal gene expression

    Deformable Prototypes for Encoding Shape Categories in Image Databases

    Full text link
    We describe a method for shape-based image database search that uses deformable prototypes to represent categories. Rather than directly comparing a candidate shape with all shape entries in the database, shapes are compared in terms of the types of nonrigid deformations (differences) that relate them to a small subset of representative prototypes. To solve the shape correspondence and alignment problem, we employ the technique of modal matching, an information-preserving shape decomposition for matching, describing, and comparing shapes despite sensor variations and nonrigid deformations. In modal matching, shape is decomposed into an ordered basis of orthogonal principal components. We demonstrate the utility of this approach for shape comparison in 2-D image databases.Office of Naval Research (Young Investigator Award N00014-06-1-0661

    Towards a genome-wide transcriptogram: the Saccharomyces cerevisiae case

    Get PDF
    A genome modular classification that associates cellular processes to modules could lead to a method to quantify the differences in gene expression levels in different cellular stages or conditions: the transcriptogram, a powerful tool for assessing cell performance, would be at hand. Here we present a computational method to order genes on a line that clusters strongly interacting genes, defining functional modules associated with gene ontology terms. The starting point is a list of genes and a matrix specifying their interactions, available at large gene interaction databases. Considering the Saccharomyces cerevisiae genome we produced a succession of plots of gene transcription levels for a fermentation process. These plots discriminate the fermentation stage the cell is going through and may be regarded as the first versions of a transcriptogram. This method is useful for extracting information from cell stimuli/responses experiments, and may be applied with diagnostic purposes to different organisms
    corecore