3,307 research outputs found

    A GIS-based multi-criteria evaluation framework for uncertainty reduction in earthquake disaster management using granular computing

    Get PDF
    One of the most important steps in earthquake disaster management is the prediction of probable damages which is called earthquake vulnerability assessment. Earthquake vulnerability assessment is a multicriteria problem and a number of multi-criteria decision making models have been proposed for the problem. Two main sources of uncertainty including uncertainty associated with experts‘ point of views and the one associated with attribute values exist in the earthquake vulnerability assessment problem. If the uncertainty in these two sources is not handled properly the resulted seismic vulnerability map will be unreliable. The main objective of this research is to propose a reliable model for earthquake vulnerability assessment which is able to manage the uncertainty associated with the experts‘ opinions. Granular Computing (GrC) is able to extract a set of if-then rules with minimum incompatibility from an information table. An integration of Dempster-Shafer Theory (DST) and GrC is applied in the current research to minimize the entropy in experts‘ opinions. The accuracy of the model based on the integration of the DST and GrC is 83%, while the accuracy of the single-expert model is 62% which indicates the importance of uncertainty management in seismic vulnerability assessment problem. Due to limited accessibility to current data, only six criteria are used in this model. However, the model is able to take into account both qualitative and quantitative criteria

    Data mining in soft computing framework: a survey

    Get PDF
    The present article provides a survey of the available literature on data mining using soft computing. A categorization has been provided based on the different soft computing tools and their hybridizations used, the data mining function implemented, and the preference criterion selected by the model. The utility of the different soft computing methodologies is highlighted. Generally fuzzy sets are suitable for handling the issues related to understandability of patterns, incomplete/noisy data, mixed media information and human interaction, and can provide approximate solutions faster. Neural networks are nonparametric, robust, and exhibit good learning and generalization capabilities in data-rich environments. Genetic algorithms provide efficient search algorithms to select a model, from mixed media data, based on some preference criterion/objective function. Rough sets are suitable for handling different types of uncertainty in data. Some challenges to data mining and the application of soft computing methodologies are indicated. An extensive bibliography is also included

    Uncertainty Measures in Ordered Information System Based on Approximation Operators

    Get PDF
    This paper focuses on constructing uncertainty measures by the pure rough set approach in ordered information system. Four types of definitions of lower and upper approximations and corresponding uncertainty measurement concepts including accuracy, roughness, approximation quality, approximation accuracy, dependency degree, and importance degree are investigated. Theoretical analysis indicates that all the four types can be used to evaluate the uncertainty in ordered information system, especially that we find that the essence of the first type and the third type is the same. To interpret and help understand the approach, experiments about real-life data sets have been conducted to test the four types of uncertainty measures. From the results obtained, it can be shown that these uncertainty measures can surely measure the uncertainty in ordered information system
    • …
    corecore