1,661 research outputs found

    Actors vs Shared Memory: two models at work on Big Data application frameworks

    Full text link
    This work aims at analyzing how two different concurrency models, namely the shared memory model and the actor model, can influence the development of applications that manage huge masses of data, distinctive of Big Data applications. The paper compares the two models by analyzing a couple of concrete projects based on the MapReduce and Bulk Synchronous Parallel algorithmic schemes. Both projects are doubly implemented on two concrete platforms: Akka Cluster and Managed X10. The result is both a conceptual comparison of models in the Big Data Analytics scenario, and an experimental analysis based on concrete executions on a cluster platform

    String-net condensation: A physical mechanism for topological phases

    Full text link
    We show that quantum systems of extended objects naturally give rise to a large class of exotic phases - namely topological phases. These phases occur when the extended objects, called ``string-nets'', become highly fluctuating and condense. We derive exactly soluble Hamiltonians for 2D local bosonic models whose ground states are string-net condensed states. Those ground states correspond to 2D parity invariant topological phases. These models reveal the mathematical framework underlying topological phases: tensor category theory. One of the Hamiltonians - a spin-1/2 system on the honeycomb lattice - is a simple theoretical realization of a fault tolerant quantum computer. The higher dimensional case also yields an interesting result: we find that 3D string-net condensation naturally gives rise to both emergent gauge bosons and emergent fermions. Thus, string-net condensation provides a mechanism for unifying gauge bosons and fermions in 3 and higher dimensions.Comment: 21 pages, RevTeX4, 19 figures. Homepage http://dao.mit.edu/~we

    A Comparison of Big Data Frameworks on a Layered Dataflow Model

    Get PDF
    In the world of Big Data analytics, there is a series of tools aiming at simplifying programming applications to be executed on clusters. Although each tool claims to provide better programming, data and execution models, for which only informal (and often confusing) semantics is generally provided, all share a common underlying model, namely, the Dataflow model. The Dataflow model we propose shows how various tools share the same expressiveness at different levels of abstraction. The contribution of this work is twofold: first, we show that the proposed model is (at least) as general as existing batch and streaming frameworks (e.g., Spark, Flink, Storm), thus making it easier to understand high-level data-processing applications written in such frameworks. Second, we provide a layered model that can represent tools and applications following the Dataflow paradigm and we show how the analyzed tools fit in each level.Comment: 19 pages, 6 figures, 2 tables, In Proc. of the 9th Intl Symposium on High-Level Parallel Programming and Applications (HLPP), July 4-5 2016, Muenster, German

    Gunrock: A High-Performance Graph Processing Library on the GPU

    Full text link
    For large-scale graph analytics on the GPU, the irregularity of data access and control flow, and the complexity of programming GPUs have been two significant challenges for developing a programmable high-performance graph library. "Gunrock", our graph-processing system designed specifically for the GPU, uses a high-level, bulk-synchronous, data-centric abstraction focused on operations on a vertex or edge frontier. Gunrock achieves a balance between performance and expressiveness by coupling high performance GPU computing primitives and optimization strategies with a high-level programming model that allows programmers to quickly develop new graph primitives with small code size and minimal GPU programming knowledge. We evaluate Gunrock on five key graph primitives and show that Gunrock has on average at least an order of magnitude speedup over Boost and PowerGraph, comparable performance to the fastest GPU hardwired primitives, and better performance than any other GPU high-level graph library.Comment: 14 pages, accepted by PPoPP'16 (removed the text repetition in the previous version v5

    Bounds on series-parallel slowdown

    Full text link
    We use activity networks (task graphs) to model parallel programs and consider series-parallel extensions of these networks. Our motivation is two-fold: the benefits of series-parallel activity networks and the modelling of programming constructs, such as those imposed by current parallel computing environments. Series-parallelisation adds precedence constraints to an activity network, usually increasing its makespan (execution time). The slowdown ratio describes how additional constraints affect the makespan. We disprove an existing conjecture positing a bound of two on the slowdown when workload is not considered. Where workload is known, we conjecture that 4/3 slowdown is always achievable, and prove our conjecture for small networks using max-plus algebra. We analyse a polynomial-time algorithm showing that achieving 4/3 slowdown is in exp-APX. Finally, we discuss the implications of our results.Comment: 12 pages, 4 figure
    • …
    corecore