372 research outputs found

    On Upward Drawings of Trees on a Given Grid

    Full text link
    Computing a minimum-area planar straight-line drawing of a graph is known to be NP-hard for planar graphs, even when restricted to outerplanar graphs. However, the complexity question is open for trees. Only a few hardness results are known for straight-line drawings of trees under various restrictions such as edge length or slope constraints. On the other hand, there exist polynomial-time algorithms for computing minimum-width (resp., minimum-height) upward drawings of trees, where the height (resp., width) is unbounded. In this paper we take a major step in understanding the complexity of the area minimization problem for strictly-upward drawings of trees, which is one of the most common styles for drawing rooted trees. We prove that given a rooted tree TT and a W×HW\times H grid, it is NP-hard to decide whether TT admits a strictly-upward (unordered) drawing in the given grid.Comment: Appears in the Proceedings of the 25th International Symposium on Graph Drawing and Network Visualization (GD 2017

    Algorithms for drawing planar graphs

    Get PDF
    Computers raken meer en meer ingeburgerd in de samenleving. Ze worden gebruikt om informatie uit te rekenen, op te slaan en snel weer te geven. Deze weergave kan gebeuren in tekst, tabellen of in allerlei andere schema's. Een plaatje zegt vaak meer dan 1000 woorden, mits het plaatje duidelijk en overzichtelijk is. Een schema kan bestaan uit rechthoeken met informatie en verbindingslijnen tussen deze rechthoeken. Denk maar aan een schematische weergave van de organisatie structuur van een bedrijf. Of beschouw een schematische weergave van alle relaties en links in een database of een ander software programma. Ook een plan voor een uit te voeren project moet duidelijk laten zien welke onderdelen afhankelijk van elkaar zijn en tegelijk of na elkaar uitgevoerd moeten worden. Uit een schema moeten alle onderlinge relaties direct blijken. Ook op het gebied van electrische schakelingen zijn er vaak vereenvoudigde schema's die alle verbindingen tussen de componenten weergeven. Denk maar aan de bijlagen van een televisietoestel. Een schema wordt hier veelal gebruikt om later reparaties of uitbreidingen aan de electrische schakelingen uit te voeren. De elec- trische schakelingen kunnen uit duizenden componenten bestaan. Als er zeer veel van deze schakelingen grasch weergegeven moeten worden, is het belangrijk dat tekeningen van deze netwerken snel gemaakt kunnen worden, en het resultaat moet duidelijk en overzichtelijk zijn. In meer algemene zin bestaat een netwerk uit een aantal componenten, met verbindingen tussen deze componenten. In de wiskunde worden deze netwerken ook wel grafen genoemd. De componenten worden knopen genoemd en de verbindingen lijnen. Dit proefschrift is gewijd aan het automatisch tekenen en grasch representeren van grafen. De hierboven vermelde voorbeelden geven een goed inzichtin de be- trokken vragen bij de methoden, ook wel algoritmen genoemd, om een layout van een graaf te maken. Helaas zijn esthetische criteria zoals \leesbaarheid" of een \mooie tekening" niet direct te vertalen tot wiskundige formules. Anderzijds kan een wiskundig optimaliseringcriterium een goede keus zijn voor een bepaalde graaf, maar leiden tot een onoverzichtelijke tekening in andere gevallen. Heel vaak voldoet een goede tekening aan een combinatie van optimaliseringscriteria. Een belangrijk criterium is ofdat de graaf zonder kruisende lijnen getekend kan worden. Als dit het geval is dan wordt de graaf planair genoemd. We bestuderen in dit proefschrift het automatisch tekenen en representeren van 223?224 SAMENVATTING planaire grafen in het platte vlak en op roosters (dus alle co? ordinaten zijn gehele getallen). We tekenen de planaire grafen ook zonder kruisende lijnen. Belangrijke criteria voor de representatie van planaire grafen, genoemd in de literatuur, zijn de volgende: Het minimaliseren van het aantal bochten in de verbindingen (of het tekenen van de graaf met alle verbindingen als rechte lijnen weergegeven). Het minimaliseren van het totaal gebruikte gebied waarbinnen de representatie \mooi" kan worden weergegeven. Het plaatsen van de knopen, lijnen en bochten op roostercoordinaten. Het maximaliseren van de hoeken tussen elke twee opeenvolgende uitgaande verbindingen van een knoop. Het maximaliseren van de totale afstand tussen de knopen. De interne gebieden moeten convex getekend worden. Kwantitatieve uitspraken over de kwaliteit van een tekenalgoritme worden steeds gedaan in termen van het aantal knopen van een graaf. Het proefschrift is onderverdeeld in drie delen: Deel A presenteert een inleiding tot het gebied van planaire grafen. Het geeft een uitgebreid overzicht ven de belangrijkste basistechnieken en algoritmen, die vooraf- gaan aan de algoritmen, beschreven in de andere delen. Deel B beschouwt het probleem van het uitbreiden van planaire grafen zodat een bepaalde graad van samenhangendheid wordt bereikt. Een graaf heet k-samen- hangend als na het weglaten van
    • …
    corecore