419 research outputs found

    Constructions of Rank Modulation Codes

    Full text link
    Rank modulation is a way of encoding information to correct errors in flash memory devices as well as impulse noise in transmission lines. Modeling rank modulation involves construction of packings of the space of permutations equipped with the Kendall tau distance. We present several general constructions of codes in permutations that cover a broad range of code parameters. In particular, we show a number of ways in which conventional error-correcting codes can be modified to correct errors in the Kendall space. Codes that we construct afford simple encoding and decoding algorithms of essentially the same complexity as required to correct errors in the Hamming metric. For instance, from binary BCH codes we obtain codes correcting tt Kendall errors in nn memory cells that support the order of n!/(log2n!)tn!/(\log_2n!)^t messages, for any constant t=1,2,...t= 1,2,... We also construct families of codes that correct a number of errors that grows with nn at varying rates, from Θ(n)\Theta(n) to Θ(n2)\Theta(n^{2}). One of our constructions gives rise to a family of rank modulation codes for which the trade-off between the number of messages and the number of correctable Kendall errors approaches the optimal scaling rate. Finally, we list a number of possibilities for constructing codes of finite length, and give examples of rank modulation codes with specific parameters.Comment: Submitted to IEEE Transactions on Information Theor

    Error-Correction in Flash Memories via Codes in the Ulam Metric

    Full text link
    We consider rank modulation codes for flash memories that allow for handling arbitrary charge-drop errors. Unlike classical rank modulation codes used for correcting errors that manifest themselves as swaps of two adjacently ranked elements, the proposed \emph{translocation rank codes} account for more general forms of errors that arise in storage systems. Translocations represent a natural extension of the notion of adjacent transpositions and as such may be analyzed using related concepts in combinatorics and rank modulation coding. Our results include derivation of the asymptotic capacity of translocation rank codes, construction techniques for asymptotically good codes, as well as simple decoding methods for one class of constructed codes. As part of our exposition, we also highlight the close connections between the new code family and permutations with short common subsequences, deletion and insertion error-correcting codes for permutations, and permutation codes in the Hamming distance

    Optimal Networks from Error Correcting Codes

    Full text link
    To address growth challenges facing large Data Centers and supercomputing clusters a new construction is presented for scalable, high throughput, low latency networks. The resulting networks require 1.5-5 times fewer switches, 2-6 times fewer cables, have 1.2-2 times lower latency and correspondingly lower congestion and packet losses than the best present or proposed networks providing the same number of ports at the same total bisection. These advantage ratios increase with network size. The key new ingredient is the exact equivalence discovered between the problem of maximizing network bisection for large classes of practically interesting Cayley graphs and the problem of maximizing codeword distance for linear error correcting codes. Resulting translation recipe converts existent optimal error correcting codes into optimal throughput networks.Comment: 14 pages, accepted at ANCS 2013 conferenc

    Symmetric Interconnection Networks from Cubic Crystal Lattices

    Full text link
    Torus networks of moderate degree have been widely used in the supercomputer industry. Tori are superb when used for executing applications that require near-neighbor communications. Nevertheless, they are not so good when dealing with global communications. Hence, typical 3D implementations have evolved to 5D networks, among other reasons, to reduce network distances. Most of these big systems are mixed-radix tori which are not the best option for minimizing distances and efficiently using network resources. This paper is focused on improving the topological properties of these networks. By using integral matrices to deal with Cayley graphs over Abelian groups, we have been able to propose and analyze a family of high-dimensional grid-based interconnection networks. As they are built over nn-dimensional grids that induce a regular tiling of the space, these topologies have been denoted \textsl{lattice graphs}. We will focus on cubic crystal lattices for modeling symmetric 3D networks. Other higher dimensional networks can be composed over these graphs, as illustrated in this research. Easy network partitioning can also take advantage of this network composition operation. Minimal routing algorithms are also provided for these new topologies. Finally, some practical issues such as implementability and preliminary performance evaluations have been addressed
    corecore