10,361 research outputs found

    Gossip along the way: order-optimal consensus through randomized path averaging

    Get PDF
    Gossip algorithms have recently received significant attention, mainly because they constitute simple and robust algorithms for distributed information processing over networks. However for many topologies that are realistic for wireless ad-hoc and sensor networks (like grids and random geometric graphs), the standard nearest-neighbor gossip converges very slowly. A recently proposed algorithm called geographic gossip improves gossip efficiency by a n/logn\sqrt{n / \log n} factor for random geometric graphs, by exploiting geographic information of node locations. In this paper we prove that a variation of geographic gossip that averages along routed paths, improves efficiency by an additional n/logn\sqrt{n / \log n} factor and is order optimal for grids and random geometric graphs. Our analysis provides some general techniques and can be used to provide bounds on the performance of randomized message passing algorithms operating over various graph topologies

    Gossip Algorithms for Distributed Signal Processing

    Full text link
    Gossip algorithms are attractive for in-network processing in sensor networks because they do not require any specialized routing, there is no bottleneck or single point of failure, and they are robust to unreliable wireless network conditions. Recently, there has been a surge of activity in the computer science, control, signal processing, and information theory communities, developing faster and more robust gossip algorithms and deriving theoretical performance guarantees. This article presents an overview of recent work in the area. We describe convergence rate results, which are related to the number of transmitted messages and thus the amount of energy consumed in the network for gossiping. We discuss issues related to gossiping over wireless links, including the effects of quantization and noise, and we illustrate the use of gossip algorithms for canonical signal processing tasks including distributed estimation, source localization, and compression.Comment: Submitted to Proceedings of the IEEE, 29 page

    Ergodic Randomized Algorithms and Dynamics over Networks

    Full text link
    Algorithms and dynamics over networks often involve randomization, and randomization may result in oscillating dynamics which fail to converge in a deterministic sense. In this paper, we observe this undesired feature in three applications, in which the dynamics is the randomized asynchronous counterpart of a well-behaved synchronous one. These three applications are network localization, PageRank computation, and opinion dynamics. Motivated by their formal similarity, we show the following general fact, under the assumptions of independence across time and linearities of the updates: if the expected dynamics is stable and converges to the same limit of the original synchronous dynamics, then the oscillations are ergodic and the desired limit can be locally recovered via time-averaging.Comment: 11 pages; submitted for publication. revised version with fixed technical flaw and updated reference

    Location-Aided Fast Distributed Consensus in Wireless Networks

    Full text link
    Existing works on distributed consensus explore linear iterations based on reversible Markov chains, which contribute to the slow convergence of the algorithms. It has been observed that by overcoming the diffusive behavior of reversible chains, certain nonreversible chains lifted from reversible ones mix substantially faster than the original chains. In this paper, we investigate the idea of accelerating distributed consensus via lifting Markov chains, and propose a class of Location-Aided Distributed Averaging (LADA) algorithms for wireless networks, where nodes' coarse location information is used to construct nonreversible chains that facilitate distributed computing and cooperative processing. First, two general pseudo-algorithms are presented to illustrate the notion of distributed averaging through chain-lifting. These pseudo-algorithms are then respectively instantiated through one LADA algorithm on grid networks, and one on general wireless networks. For a k×kk\times k grid network, the proposed LADA algorithm achieves an ϵ\epsilon-averaging time of O(klog(ϵ1))O(k\log(\epsilon^{-1})). Based on this algorithm, in a wireless network with transmission range rr, an ϵ\epsilon-averaging time of O(r1log(ϵ1))O(r^{-1}\log(\epsilon^{-1})) can be attained through a centralized algorithm. Subsequently, we present a fully-distributed LADA algorithm for wireless networks, which utilizes only the direction information of neighbors to construct nonreversible chains. It is shown that this distributed LADA algorithm achieves the same scaling law in averaging time as the centralized scheme. Finally, we propose a cluster-based LADA (C-LADA) algorithm, which, requiring no central coordination, provides the additional benefit of reduced message complexity compared with the distributed LADA algorithm.Comment: 44 pages, 14 figures. Submitted to IEEE Transactions on Information Theor
    corecore