456 research outputs found

    D'ya like DAGs? A Survey on Structure Learning and Causal Discovery

    Full text link
    Causal reasoning is a crucial part of science and human intelligence. In order to discover causal relationships from data, we need structure discovery methods. We provide a review of background theory and a survey of methods for structure discovery. We primarily focus on modern, continuous optimization methods, and provide reference to further resources such as benchmark datasets and software packages. Finally, we discuss the assumptive leap required to take us from structure to causality.Comment: 35 page

    GPU-accelerated stochastic predictive control of drinking water networks

    Get PDF
    Despite the proven advantages of scenario-based stochastic model predictive control for the operational control of water networks, its applicability is limited by its considerable computational footprint. In this paper we fully exploit the structure of these problems and solve them using a proximal gradient algorithm parallelizing the involved operations. The proposed methodology is applied and validated on a case study: the water network of the city of Barcelona.Comment: 11 pages in double column, 7 figure

    Evaluating temporal observation-based causal discovery techniques applied to road driver behaviour

    Get PDF
    Autonomous robots are required to reason about the behaviour of dynamic agents in their environment. The creation of models to describe these relationships is typically accomplished through the application of causal discovery techniques. However, as it stands observational causal discovery techniques struggle to adequately cope with conditions such as causal sparsity and non-stationarity typically seen during online usage in autonomous agent domains. Meanwhile, interventional techniques are not always feasible due to domain restrictions. In order to better explore the issues facing observational techniques and promote further discussion of these topics we carry out a benchmark across 10 contemporary observational temporal causal discovery methods in the domain of autonomous driving. By evaluating these methods upon causal scenes drawn from real world datasets in addition to those generated synthetically we highlight where improvements need to be made in order to facilitate the application of causal discovery techniques to the aforementioned use-cases. Finally, we discuss potential directions for future work that could help better tackle the difficulties currently experienced by state of the art techniques
    • …
    corecore