32,042 research outputs found

    Sublattices of complete lattices with continuity conditions

    Full text link
    Various embedding problems of lattices into complete lattices are solved. We prove that for any join-semilattice S with the minimal join-cover refinement property, the ideal lattice IdS of S is both algebraic and dually algebraic. Furthermore, if there are no infinite D-sequences in J(S), then IdS can be embedded into a direct product of finite lower bounded lattices. We also find a system of infinitary identities that characterize sublattices of complete, lower continuous, and join-semidistributive lattices. These conditions are satisfied by any (not necessarily finitely generated) lower bounded lattice and by any locally finite, join-semidistributive lattice. Furthermore, they imply M. Ern\'e's dual staircase distributivity. On the other hand, we prove that the subspace lattice of any infinite-dimensional vector space cannot be embedded into any countably complete, countably upper continuous, and countably lower continuous lattice. A similar result holds for the lattice of all order-convex subsets of any infinite chain.Comment: To appear in Algebra Universali

    The extreme vulnerability of interdependent spatially embedded networks

    Full text link
    Recent studies show that in interdependent networks a very small failure in one network may lead to catastrophic consequences. Above a critical fraction of interdependent nodes, even a single node failure can invoke cascading failures that may abruptly fragment the system, while below this "critical dependency" (CD) a failure of few nodes leads only to small damage to the system. So far, the research has been focused on interdependent random networks without space limitations. However, many real systems, such as power grids and the Internet, are not random but are spatially embedded. Here we analytically and numerically analyze the stability of systems consisting of interdependent spatially embedded networks modeled as lattice networks. Surprisingly, we find that in lattice systems, in contrast to non-embedded systems, there is no CD and \textit{any} small fraction of interdependent nodes leads to an abrupt collapse. We show that this extreme vulnerability of very weakly coupled lattices is a consequence of the critical exponent describing the percolation transition of a single lattice. Our results are important for understanding the vulnerabilities and for designing robust interdependent spatial embedded networks.Comment: 13 pages, 5 figure

    Sublattices of lattices of order-convex sets, I. The main representation theorem

    Get PDF
    For a partially ordered set P, we denote by Co(P) the lattice of order-convex subsets of P. We find three new lattice identities, (S), (U), and (B), such that the following result holds. Theorem. Let L be a lattice. Then L embeds into some lattice of the form Co(P) iff L satisfies (S), (U), and (B). Furthermore, if L has an embedding into some Co(P), then it has such an embedding that preserves the existing bounds. If L is finite, then one can take P finite, of cardinality at most 2n2−5n+42n^2-5n+4, where n is the number of join-irreducible elements of L. On the other hand, the partially ordered set P can be chosen in such a way that there are no infinite bounded chains in P and the undirected graph of the predecessor relation of P is a tree
    • …
    corecore