4,013 research outputs found

    Restricted String Representations

    Get PDF
    A string representation of a graph assigns to every vertex a curve in the plane so that two curves intersect if and only if the represented vertices are adjacent. This work investigates string representations of graphs with an emphasis on the shapes of curves and the way they intersect. We strengthen some previously known results and show that every planar graph has string representations where every curve consists of axis-parallel line segments with at most two bends (those are the so-called B2B_2-VPG representations) and simultaneously two curves intersect each other at most once (those are the so-called 1-string representations). Thus, planar graphs are B2B_2-VPG 11-string graphs. We further show that with some restrictions on the shapes of the curves, string representations can be used to produce approximation algorithms for several hard problems. The B2B_2-VPG representations of planar graphs satisfy these restrictions. We attempt to further restrict the number of bends in VPG representations for subclasses of planar graphs, and investigate B1B_1-VPG representations. We propose new classes of string representations for planar graphs that we call ``order-preserving.'' Order-preservation is an interesting property which relates the string representation to the planar embedding of the graph, and we believe that it might prove useful when constructing string representations. Finally, we extend our investigation of string representations to string representations that require some curves to intersect multiple times. We show that there are outer-string graphs that require an exponential number of crossings in their outer-string representations. Our construction also proves that 1-planar graphs, i.e., graphs that are no longer planar, yet fairly close to planar graphs, may have string representations, but they are not always 1-string

    Planar graphs as L-intersection or L-contact graphs

    Full text link
    The L-intersection graphs are the graphs that have a representation as intersection graphs of axis parallel shapes in the plane. A subfamily of these graphs are {L, |, --}-contact graphs which are the contact graphs of axis parallel L, |, and -- shapes in the plane. We prove here two results that were conjectured by Chaplick and Ueckerdt in 2013. We show that planar graphs are L-intersection graphs, and that triangle-free planar graphs are {L, |, --}-contact graphs. These results are obtained by a new and simple decomposition technique for 4-connected triangulations. Our results also provide a much simpler proof of the known fact that planar graphs are segment intersection graphs

    On Semantic Word Cloud Representation

    Full text link
    We study the problem of computing semantic-preserving word clouds in which semantically related words are close to each other. While several heuristic approaches have been described in the literature, we formalize the underlying geometric algorithm problem: Word Rectangle Adjacency Contact (WRAC). In this model each word is associated with rectangle with fixed dimensions, and the goal is to represent semantically related words by ensuring that the two corresponding rectangles touch. We design and analyze efficient polynomial-time algorithms for some variants of the WRAC problem, show that several general variants are NP-hard, and describe a number of approximation algorithms. Finally, we experimentally demonstrate that our theoretically-sound algorithms outperform the early heuristics

    Connectivity Compression for Irregular Quadrilateral Meshes

    Get PDF
    Applications that require Internet access to remote 3D datasets are often limited by the storage costs of 3D models. Several compression methods are available to address these limits for objects represented by triangle meshes. Many CAD and VRML models, however, are represented as quadrilateral meshes or mixed triangle/quadrilateral meshes, and these models may also require compression. We present an algorithm for encoding the connectivity of such quadrilateral meshes, and we demonstrate that by preserving and exploiting the original quad structure, our approach achieves encodings 30 - 80% smaller than an approach based on randomly splitting quads into triangles. We present both a code with a proven worst-case cost of 3 bits per vertex (or 2.75 bits per vertex for meshes without valence-two vertices) and entropy-coding results for typical meshes ranging from 0.3 to 0.9 bits per vertex, depending on the regularity of the mesh. Our method may be implemented by a rule for a particular splitting of quads into triangles and by using the compression and decompression algorithms introduced in [Rossignac99] and [Rossignac&Szymczak99]. We also present extensions to the algorithm to compress meshes with holes and handles and meshes containing triangles and other polygons as well as quads

    On grounded L-graphs and their relatives

    Get PDF
    We consider the graph class Grounded-L corresponding to graphs that admit an intersection representation by L-shaped curves, where additionally the topmost points of each curve are assumed to belong to a common horizontal line. We prove that Grounded-L graphs admit an equivalent characterisation in terms of vertex ordering with forbidden patterns. We also compare this class to related intersection classes, such as the grounded segment graphs, the monotone L-graphs (a.k.a. max point-tolerance graphs), or the outer-1-string graphs. We give constructions showing that these classes are all distinct and satisfy only trivial or previously known inclusions.Comment: 16 pages, 6 figure

    Wilson loops in 3-dimensional N=6 supersymmetric Chern-Simons Theory and their string theory duals

    Get PDF
    We study Wilson loops in the three-dimensional N=6 supersymmetric Chern-Simons theory recently constructed by Aharony, Bergman, Jafferis and Maldacena, that is conjectured to be dual to type IIA string theory on AdS_4 x CP^3. We construct loop operators in the Chern-Simons theory which preserve 1/6 of the supercharges and calculate their expectation value up to 2-loop order at weak coupling. The expectation value at strong coupling is found by constructing the string theory duals of these operators. For low dimensional representations these are fundamental strings, for high dimensional representations these are D2-branes and D6-branes. In support of this identification we demonstrate that these string theory solutions match the symmetries, charges and the preserved supersymmetries of their Chern-Simons theory counterparts.Comment: 28 pages. v2: references added, choice of the Wilson loop operator clarified; v3: combinatorial factor of 2 in perturbative calculation corrected; v4: typos corrected, version to be publishe
    • …
    corecore