91,676 research outputs found

    On the stability and deformability of top stars

    Full text link
    Topological stars, or top stars for brevity, are smooth horizonless static solutions of Einstein-Maxwell theory in 5-d that reduce to spherically symmetric solutions of Einstein-Maxwell-Dilaton theory in 4-d. We study linear scalar perturbations of top stars and argue for their stability and deformability. We tackle the problem with different techniques including WKB approximation, numerical analysis, Breit-Wigner resonance method and quantum Seiberg-Witten curves. We identify three classes of quasi-normal modes corresponding to prompt-ring down modes, long-lived meta-stable modes and what we dub `blind' modes. All mode frequencies we find have negative imaginary parts, thus suggesting linear stability of top stars. Moreover we determine the tidal Love and dissipation numbers encoding the response to tidal deformations and, similarly to black holes, we find zero value in the static limit but, contrary to black holes, we find non-trivial dynamical Love numbers and vanishing dissipative effects at linear order. For the sake of illustration in a simpler context, we also consider a toy model with a piece-wise constant potential and a centrifugal barrier that captures most of the above features in a qualitative fashion

    Dynamics of magnetic flux tubes in close binary stars I. Equilibrium and stability properties

    Full text link
    Surface reconstructions of active close binary stars based on photometric and spectroscopic observations reveal non-uniform starspot distributions, which indicate the existence of preferred spot longitudes (with respect to the companion star). We consider the equilibrium and linear stability of toroidal magnetic flux tubes in close binaries to examine whether tidal effects are capable to initiate the formation of rising flux loops at preferred longitudes near the bottom of the stellar convection zone. The tidal force and the deviation of the stellar structure from spherical symmetry are treated in lowest-order perturbation theory assuming synchronised close binaries with orbital periods of a few days. The frequency, growth time, and spatial structure of linear eigenmodes are determined by a stability analysis. We find that, despite their small magnitude, tidal effects can lead to a considerable longitudinal asymmetry in the formation probability of flux loops, since the breaking of the axial symmetry due to the presence of the companion star is reinforced by the sensitive dependence of the stability properties on the stellar stratification and by resonance effects. The orientation of preferred longitudes of loop formation depends on the equilibrium configuration and the wave number of the dominating eigenmode. The change of the growth times of unstable modes with respect to the case of a single star is very small.Comment: 11 pages, 11 figures, accepted for publication in A&

    Interaction Between Convection and Pulsation

    Get PDF
    This article reviews our current understanding of modelling convection dynamics in stars. Several semi-analytical time-dependent convection models have been proposed for pulsating one-dimensional stellar structures with different formulations for how the convective turbulent velocity field couples with the global stellar oscillations. In this review we put emphasis on two, widely used, time-dependent convection formulations for estimating pulsation properties in one-dimensional stellar models. Applications to pulsating stars are presented with results for oscillation properties, such as the effects of convection dynamics on the oscillation frequencies, or the stability of pulsation modes, in classical pulsators and in stars supporting solar-type oscillations.Comment: Invited review article for Living Reviews in Solar Physics. 88 pages, 14 figure

    Relativistic stars with a linear equation of state: analogy with classical isothermal spheres and black holes

    Full text link
    We complete our previous investigation concerning the structure and the stability of "isothermal" spheres in general relativity. This concerns objects that are described by a linear equation of state P=qϵP=q\epsilon so that the pressure is proportional to the energy density. In the Newtonian limit q0q\to 0, this returns the classical isothermal equation of state. We consider specifically a self-gravitating radiation (q=1/3), the core of neutron stars (q=1/3) and a gas of baryons interacting through a vector meson field (q=1). We study how the thermodynamical parameters scale with the size of the object and find unusual behaviours due to the non-extensivity of the system. We compare these scaling laws with the area scaling of the black hole entropy. We also determine the domain of validity of these scaling laws by calculating the critical radius above which relativistic stars described by a linear equation of state become dynamically unstable. For photon stars, we show that the criteria of dynamical and thermodynamical stability coincide. Considering finite spheres, we find that the mass and entropy as a function of the central density present damped oscillations. We give the critical value of the central density, corresponding to the first mass peak, above which the series of equilibria becomes unstable. Finally, we extend our results to d-dimensional spheres. We show that the oscillations of mass versus central density disappear above a critical dimension d_{crit}(q). For Newtonian isothermal stars (q=0) we recover the critical dimension d_{crit}=10. For the stiffest stars (q=1) we find d_{crit}=9 and for a self-gravitating radiation (q=1/d) we find d_{crit}=9.96404372... very close to 10. Finally, we give analytical solutions of relativistic isothermal spheres in 2D gravity.Comment: A minor mistake in calculation has been corrected in the second version (v2

    Dynamical Boson Stars

    Full text link
    The idea of stable, localized bundles of energy has strong appeal as a model for particles. In the 1950s John Wheeler envisioned such bundles as smooth configurations of electromagnetic energy that he called {\em geons}, but none were found. Instead, particle-like solutions were found in the late 1960s with the addition of a scalar field, and these were given the name {\em boson stars}. Since then, boson stars find use in a wide variety of models as sources of dark matter, as black hole mimickers, in simple models of binary systems, and as a tool in finding black holes in higher dimensions with only a single killing vector. We discuss important varieties of boson stars, their dynamic properties, and some of their uses, concentrating on recent efforts.Comment: 79 pages, 25 figures, invited review for Living Reviews in Relativity; major revision in 201

    Secular Instabilities of Keplerian Stellar Discs

    Get PDF
    We present idealized models of a razor-thin, axisymmetric, Keplerian stellar disc around a massive black hole, and study non-axisymmetric secular instabilities in the absence of either counter-rotation or loss cones. These discs are prograde mono-energetic waterbags, whose phase space distribution functions are constant for orbits within a range of eccentricities (e) and zero outside this range. The linear normal modes of waterbags are composed of sinusoidal disturbances of the edges of distribution function in phase space. Waterbags which include circular orbits (polarcaps) have one stable linear normal mode for each azimuthal wavenumber m. The m = 1 mode always has positive pattern speed and, for polarcaps consisting of orbits with e < 0.9428, only the m = 1 mode has positive pattern speed. Waterbags excluding circular orbits (bands) have two linear normal modes for each m, which can be stable or unstable. We derive analytical expressions for the instability condition, pattern speeds, growth rates and normal mode structure. Narrow bands are unstable to modes with a wide range in m. Numerical simulations confirm linear theory and follow the non-linear evolution of instabilities. Long-time integration suggests that instabilities of different m grow, interact non-linearly and relax collisionlessly to a coarse-grained equilibrium with a wide range of eccentricities.Comment: Manuscript accepted for publication in MNRA
    corecore