101 research outputs found

    Orchestration of Crosshaul slices from federated administrative domains

    Get PDF
    Proceeding of: 2016 European Conference on Networks and Communications (EuCNC)With the advent of 5G networks, more dynamicity and flexibility will be needed for the deployment of services with very distinct requirements. Crosshaul areas (those integrating fronthaul and backhaul) are especially critical because of the variability of the demand and the cost of the (own) network deployment, which in many cases is jeopardized by the huge level of investment needed. A common market place to trade the required networking and computing facilities (in the form of a slice) in a multi-domain federated environment is envisaged as the solution for easing the adaptation to future demands. This paper proposes to develop the concept of multi-domain Crosshaul by enabling the dynamic request of Crosshaul slices through a multi-provider exchange.This work has been supported by the European Community through the projects 5GEx (grant no. 671636) and 5GCrosshaul (grant no. 671598) within the H2020 programme

    Progressive introduction of network softwarization in operational telecom networks: advances at architectural, service and transport levels

    Get PDF
    Technological paradigms such as Software Defined Networking, Network Function Virtualization and Network Slicing are altogether offering new ways of providing services. This process is widely known as Network Softwarization, where traditional operational networks adopt capabilities and mechanisms inherit form the computing world, such as programmability, virtualization and multi-tenancy. This adoption brings a number of challenges, both from the technological and operational perspectives. On the other hand, they provide an unprecedented flexibility opening opportunities to developing new services and new ways of exploiting and consuming telecom networks. This Thesis first overviews the implications of the progressive introduction of network softwarization in operational networks for later on detail some advances at different levels, namely architectural, service and transport levels. It is done through specific exemplary use cases and evolution scenarios, with the goal of illustrating both new possibilities and existing gaps for the ongoing transition towards an advanced future mode of operation. This is performed from the perspective of a telecom operator, paying special attention on how to integrate all these paradigms into operational networks for assisting on their evolution targeting new, more sophisticated service demands.Programa de Doctorado en Ingeniería Telemática por la Universidad Carlos III de MadridPresidente: Eduardo Juan Jacob Taquet.- Secretario: Francisco Valera Pintor.- Vocal: Jorge López Vizcaín

    View on 5G Architecture: Version 2.0

    Get PDF
    The 5G Architecture Working Group as part of the 5GPPP Initiative is looking at capturing novel trends and key technological enablers for the realization of the 5G architecture. It also targets at presenting in a harmonized way the architectural concepts developed in various projects and initiatives (not limited to 5GPPP projects only) so as to provide a consolidated view on the technical directions for the architecture design in the 5G era. The first version of the white paper was released in July 2016, which captured novel trends and key technological enablers for the realization of the 5G architecture vision along with harmonized architectural concepts from 5GPPP Phase 1 projects and initiatives. Capitalizing on the architectural vision and framework set by the first version of the white paper, this Version 2.0 of the white paper presents the latest findings and analyses with a particular focus on the concept evaluations, and accordingly it presents the consolidated overall architecture design

    Novel Resource and Energy Management for 5G Integrated Backhaul/Fronthaul (5G-Crosshaul)

    Get PDF
    The integration of both fronthaul and backhaul into a single transport network (namely, 5G-Crosshaul) is envisioned for the future 5G transport networks. This requires a fully integrated and unified management of the fronthaul and backhaul resources in a cost-efficient, scalable and flexible way through the deployment of an SDN/NFV control framework. This paper presents the designed 5G-Crosshaul architecture, two selected SDN/NFV applications targeting for cost-efficient resource and energy usage: the Resource Management Application (RMA) and the Energy Management and Monitoring Application (EMMA). The former manages 5G-Crosshaul resources (network, computing and storage resources). The latter is a special version of RMA with the focus on the objectives of optimizing the energy consumption and minimizing the energy footprint of the 5G-Crosshaul infrastructure. Besides, EMMA is applied to the mmWave mesh network and the high speed train scenarios. In particular, we present the key application design with their main components and the interactions with each other and with the control plane, and then we present the proposed application optimization algorithms along with initial results. The first results demonstrate that the proposed RMA is able to cost-efficiently utilize the Crosshaul resources of heterogeneous technologies, while EMMA can achieve significant energy savings through energy-efficient routing of traffic flows. For experiments in real system, we also set up Proof of Concepts (PoCs) for both applications in order to perform real trials in the field.© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    Packet forwarding for heterogeneous technologies for integrated fronthaul/backhaul

    Get PDF
    Proceeding of: 2016 European Conference on Networks and Communications (EuCNC)To meet the future mobile user demand at a reduced cost, operators are looking at solutions such as C-RAN and different functional splits to decrease the cost of deploying and maintaining cell sites. The use of these technologies forces operators to manage two physically separated networks, one for backhaul and one for fronthaul. To solve this issue, transport networks for 5G will carry both fronthaul and backhaul traffic operating over heterogeneous data plane technologies. Such an integrated fronthaul/backhaul (denoted as 5G-Crosshaul) transport network will be software-controlled to adapt to the fluctuating capacity demand of the new generation air interfaces. Based on a proposed data- and control-plane architecture for 5G-Crosshaul, we propose a frame format common to both fronthaul and backhaul traffic as well as a corresponding abstraction of the forwarding behavior of the network elements. The common frame format and the forwarding abstraction define the information to be exchanged at the southbound interface (SBI) of the 5G-Crosshaul Control Infrastructure (XCI). This paper derives requirements for the SBI from 5G use cases.The authors of this paper have been sponsored in part by the project H2020-ICT-2014-2 “5G-Crosshaul”: The 5G integrated fronthaul/backhaul” (671598

    5G-crosshaul: an SDN/NFV integrated fronthaul/backhaul transport network architecture

    Get PDF
    This article proposes an innovative architecture design for a 5G transport solution (dubbed 5G-Crosshaul) targeting the integration of existing and new fronthaul and backhaul technologies and interfaces. At the heart of the proposed design lie an SDN/NFV-based management and orchestration entity (XCI), and an Ethernet-based packet forwarding entity (XFE) supporting various fronthaul and backhaul traffic QoS profiles. The XCI lever-ages widespread architectural frameworks for NFV (ETSI NFV) and SDN (Open Daylight and ONOS). It opens the 5G transport network as a service for innovative network applications on top (e.g., multi-tenancy, resource management), provisioning the required network and IT resources in a flexible, cost-effective, and abstract manner. The proposed design supports the concept of network slicing pushed by the industry for realizing a truly flexible, sharable, and cost-effective future 5G system.This work has been funded by the EU H2020 project “5G- Crosshaul: The 5G Integrated Fronthaul/Backhaul” (Grant no. 671598)

    5G Mobile Transport and Computing Platform for verticals

    Get PDF
    The support of 5G verticals service requires todesign an efficient Mobile Transport and Computing Platformwhere transport, mobile and MEC must interact effectively. Inthis paper, a novel architecture is proposed providing itsmapping on ETSI NFV. Two relevant use cases, such asautomotive and cloud robotics are presented to assess the novelarchitecture.This work has been partially funded by the EU H2020 5G-Transformer Project (grant no. 761536)

    A Framework for Orchestration and Federation of 5G Services in a Multi-Domain Scenario

    Get PDF
    First International Workshop on Experimentation and Measurements in 5G (EM-5G).This paper presents the design of the 5GT Service Orchestrator (SO), which is one of the key components of the 5G-TRANSFORMER (5GT) system for the deployment of vertical services. Depending on the requests from verticals, the 5GT-SO offers service or resource orchestration and federation. These functions include all tasks related to coordinating and providing the vertical with an integrated view of services and resources from multiple administrative domains. In particular, service orchestration entails managing end-to-end services that are split into various domains based on requirements and availability. Federation entails managing administrative relations at the interface between the SOs belonging to different domains and handling abstraction of services. The SO key functionalities, architecture, interfaces, as well as two sample use cases for service federation and service and resource orchestration are presented. Results for the latter use case show that a vertical service is deployed in the order of minutes.This work has been partially funded by the EC H2020 5G-TRANSFORMER Project (grant no. 761536)
    • …
    corecore