217 research outputs found

    Service Chain (SC) Mapping with Multiple SC Instances in a Wide Area Network

    Full text link
    Network Function Virtualization (NFV) aims to simplify deployment of network services by running Virtual Network Functions (VNFs) on commercial off-the-shelf servers. Service deployment involves placement of VNFs and in-sequence routing of traffic flows through VNFs comprising a Service Chain (SC). The joint VNF placement and traffic routing is usually referred as SC mapping. In a Wide Area Network (WAN), a situation may arise where several traffic flows, generated by many distributed node pairs, require the same SC, one single instance (or occurrence) of that SC might not be enough. SC mapping with multiple SC instances for the same SC turns out to be a very complex problem, since the sequential traversal of VNFs has to be maintained while accounting for traffic flows in various directions. Our study is the first to deal with SC mapping with multiple SC instances to minimize network resource consumption. Exact mathematical modeling of this problem results in a quadratic formulation. We propose a two-phase column-generation-based model and solution in order to get results over large network topologies within reasonable computational times. Using such an approach, we observe that an appropriate choice of only a small set of SC instances can lead to solution very close to the minimum bandwidth consumption

    IT and Multi-layer Online Resource Allocation and Offline Planning in Metropolitan Networks

    Get PDF
    Metropolitan networks are undergoing a major technological breakthrough leveraging the capabilities of software-defined networking (SDN) and network function virtualization (NFV). NFV permits the deployment of virtualized network functions (VNFs) on commodity hardware appliances which can be combined with SDN flexibility and programmability of the network infrastructure. SDN/NFV-enabled networks require decision-making in two time scales: short-term online resource allocation and mid-to-long term offline planning. In this paper, we first tackle the dimensioning of SDN/NFV-enabled metropolitan networks paying special attention to the role that latency plays in the capacity planning. We focus on a specific use-case: the metropolitan network that covers the Murcia - Alicante Spanish regions. Then, we propose a latency-aware multilayer service-chain allocation (LA-ML-SCA) algorithm to explore a range of maximum latency requirements and their impact on the resources for dimensioning the metropolitan network. We observe that design costs increase for low latency requirements as more data center facilities need to be spread to get closer to the network edge, reducing the economies of scale on the IT infrastructure. Subsequently, we review our recent joint computation of multi-site VNF placement and multilayer resource allocation in the deployment of a network service in a metro network. Specifically, a set of subroutines contained in LA-ML-SCA are experimentally validated in a network optimization-as-a-service architecture that assists an Open-Source MANO instance, virtual infrastructure managers and WAN controllers in a metro network test-bed.Grant numbers : Go2Edge - Engineering Future Edge Computing Networks, Systems and Services.@ 2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works

    A Scalable Approach for Service Chain (SC) Mapping with Multiple SC Instances in a Wide-Area Network

    Full text link
    Network Function Virtualization (NFV) aims to simplify deployment of network services by running Virtual Network Functions (VNFs) on commercial off-the-shelf servers. Service deployment involves placement of VNFs and in-sequence routing of traffic flows through VNFs comprising a Service Chain (SC). The joint VNF placement and traffic routing is called SC mapping. In a Wide-Area Network (WAN), a situation may arise where several traffic flows, generated by many distributed node pairs, require the same SC; then, a single instance (or occurrence) of that SC might not be enough. SC mapping with multiple SC instances for the same SC turns out to be a very complex problem, since the sequential traversal of VNFs has to be maintained while accounting for traffic flows in various directions. Our study is the first to deal with the problem of SC mapping with multiple SC instances to minimize network resource consumption. We first propose an Integer Linear Program (ILP) to solve this problem. Since ILP does not scale to large networks, we develop a column-generation-based ILP (CG-ILP) model. However, we find that exact mathematical modeling of the problem results in quadratic constraints in our CG-ILP. The quadratic constraints are made linear but even the scalability of CG-ILP is limited. Hence, we also propose a two-phase column-generation-based approach to get results over large network topologies within reasonable computational times. Using such an approach, we observe that an appropriate choice of only a small set of SC instances can lead to a solution very close to the minimum bandwidth consumption. Further, this approach also helps us to analyze the effects of number of VNF replicas and number of NFV nodes on bandwidth consumption when deploying these minimum number of SC instances.Comment: arXiv admin note: substantial text overlap with arXiv:1704.0671

    Distributed VNF Scaling in Large-scale Datacenters: An ADMM-based Approach

    Full text link
    Network Functions Virtualization (NFV) is a promising network architecture where network functions are virtualized and decoupled from proprietary hardware. In modern datacenters, user network traffic requires a set of Virtual Network Functions (VNFs) as a service chain to process traffic demands. Traffic fluctuations in Large-scale DataCenters (LDCs) could result in overload and underload phenomena in service chains. In this paper, we propose a distributed approach based on Alternating Direction Method of Multipliers (ADMM) to jointly load balance the traffic and horizontally scale up and down VNFs in LDCs with minimum deployment and forwarding costs. Initially we formulate the targeted optimization problem as a Mixed Integer Linear Programming (MILP) model, which is NP-complete. Secondly, we relax it into two Linear Programming (LP) models to cope with over and underloaded service chains. In the case of small or medium size datacenters, LP models could be run in a central fashion with a low time complexity. However, in LDCs, increasing the number of LP variables results in additional time consumption in the central algorithm. To mitigate this, our study proposes a distributed approach based on ADMM. The effectiveness of the proposed mechanism is validated in different scenarios.Comment: IEEE International Conference on Communication Technology (ICCT), Chengdu, China, 201

    Impact of Processing-Resource Sharing on the Placement of Chained Virtual Network Functions

    Full text link
    Network Function Virtualization (NFV) provides higher flexibility for network operators and reduces the complexity in network service deployment. Using NFV, Virtual Network Functions (VNF) can be located in various network nodes and chained together in a Service Function Chain (SFC) to provide a specific service. Consolidating multiple VNFs in a smaller number of locations would allow decreasing capital expenditures. However, excessive consolidation of VNFs might cause additional latency penalties due to processing-resource sharing, and this is undesirable, as SFCs are bounded by service-specific latency requirements. In this paper, we identify two different types of penalties (referred as "costs") related to the processingresource sharing among multiple VNFs: the context switching costs and the upscaling costs. Context switching costs arise when multiple CPU processes (e.g., supporting different VNFs) share the same CPU and thus repeated loading/saving of their context is required. Upscaling costs are incurred by VNFs requiring multi-core implementations, since they suffer a penalty due to the load-balancing needs among CPU cores. These costs affect how the chained VNFs are placed in the network to meet the performance requirement of the SFCs. We evaluate their impact while considering SFCs with different bandwidth and latency requirements in a scenario of VNF consolidation.Comment: Accepted for publication in IEEE Transactions on Cloud Computin

    Energy-Efficient Softwarized Networks: A Survey

    Full text link
    With the dynamic demands and stringent requirements of various applications, networks need to be high-performance, scalable, and adaptive to changes. Researchers and industries view network softwarization as the best enabler for the evolution of networking to tackle current and prospective challenges. Network softwarization must provide programmability and flexibility to network infrastructures and allow agile management, along with higher control for operators. While satisfying the demands and requirements of network services, energy cannot be overlooked, considering the effects on the sustainability of the environment and business. This paper discusses energy efficiency in modern and future networks with three network softwarization technologies: SDN, NFV, and NS, introduced in an energy-oriented context. With that framework in mind, we review the literature based on network scenarios, control/MANO layers, and energy-efficiency strategies. Following that, we compare the references regarding approach, evaluation method, criterion, and metric attributes to demonstrate the state-of-the-art. Last, we analyze the classified literature, summarize lessons learned, and present ten essential concerns to open discussions about future research opportunities on energy-efficient softwarized networks.Comment: Accepted draft for publication in TNSM with minor updates and editin
    • …
    corecore