9 research outputs found

    Orchestrating Lightpath Adaptation and Flexible Functional Split to Recover Virtualized RAN Connectivity

    Get PDF
    This study shows that a two-step recovery scheme orchestrating lightpath transmission adaptation and evolved NodeB (eNB) functional split reconfiguration preserves the Virtualized RAN fronthaul connectivity even when network capacity is scarce.This work has been partially funded by the EU H2020 “5G-Transformer” Project (grant no. 761536

    Orchestrating Lightpath Recovery and Flexible Functional Split to Preserve Virtualized RAN Connectivity

    Get PDF
    In the next-generation radio access network (NG RAN), the next-generation evolved NodeBs (gNBs) will be, likely, split into virtualized central units (CUs) and distributed units (DUs) interconnected by a fronthaul network. Because of fronthaul latency and capacity requirements, optical metro-ring networks are among the main candidates for supporting converged 5G and non-5G services. In this scenario, a degradation in the quality of transmission of the lightpaths connecting DU and CU can be revealed (or anticipated) based on monitoring techniques. Thus, the lightpath transmission parameters can be adapted to maintain the required bit error rate (BER). However, in specific cases, the original requested capacity between DU and CU could be not guaranteed, thus impacting the service. In this case, another DU–CU connectivity should be considered, relying on a change of the so-called functional split. This study proposes a two-step recovery scheme orchestrating lightpath transmission adaptation and functional split reconfiguration to guarantee the requested connectivity in a virtualized RAN fronthaul. Results show that, for the connections that cannot be transported by the original lightpath, a graceful degradation followed by a recovery is possible within tens of seconds.This work was partly funded by the project H2020-ICT-2016-2 “5G-TRANSFORMER” (761536

    Towards Zero Touch Next Generation Network Management

    Get PDF
    The current trend in user services places an ever-growing demand for higher data rates, near-real-time latencies, and near-perfect quality of service. To meet such demands, fundamental changes were made to the front and mid-haul and backbone networking segments servicing them. One of the main changes made was virtualizing the networking components to allow for faster deployment and reconfiguration when needed. However, adopting such technologies poses several challenges, such as improving the performance and efficiency of these systems by properly orchestrating the services to the ideal edge device. A second challenge is ensuring the backbone optical networking maximizes and maintains the throughput levels under more dynamically variant conditions. A third challenge is addressing the limitation of placement techniques in O-RAN. In this thesis, we propose using various optimization modeling and machine learning techniques in three segments of network systems towards lowering the need for human intervention targeting zero-touch networking. In particular, the first part of the thesis applies optimization modeling, heuristics, and segmentation to improve the locally driven orchestration techniques, which are used to place demands on edge devices throughput to ensure efficient and resilient placement decisions. The second part of the thesis proposes using reinforcement learning (RL) techniques on a nodal base to address the dynamic nature of demands within an optical networking paradigm. The RL techniques ensure blocking rates are kept to a minimum by tailoring the agents’ behavior based on each node\u27s demand intake throughout the day. The third part of the thesis proposes using transfer learning augmented reinforcement learning to drive a network slicing-based solution in O-RAN to address the stringent and divergent demands of 5G applications. The main contributions of the thesis consist of three broad parts. The first is developing optimal and heuristic orchestration algorithms that improve demands’ performance and reliability in an edge computing environment. The second is using reinforcement learning to determine the appropriate spectral placement for demands within isolated optical paths, ensuring lower fragmentation and better throughput utilization. The third is developing a heuristic controlled transfer learning augmented reinforcement learning network slicing in an O-RAN environment. Hence, ensuring improved reliability while maintaining lower complexity than traditional placement techniques

    ADVANCED RADIO ACCESS NETWORK FEATURING FLEXIBLE PER-UE SERVICE PROVISIONING AND COLLABORATIVE MOBILE EDGE COMPUTING

    Get PDF
    Enriched by numerous technological advances, radio access networks (RANs) in the fifth mobile networks generation (5G)-and-beyond strive to meet the goals of both mobile network operators (MNOs) and end-users. While MNOs seek efficiency, resiliency, reliability and flexibility of their networks, end-users are more concerned with the variety and quality of the provided, state-of-the-art, reasonably priced services. This has resulted in a complex, multi-tier, and heterogeneous RAN architecture that is severely challenged to achieve and maintain a strict reliability requirement of seven-nines (i.e., 99.99999% network up-time) and to meet ultra-reliable, low latency communications (URLLC) requirements with a latency upper bound of 1 ms end-to-end roundtrip time. Based on the flexible function split concept and data-plane programmability, this dissertation makes several key contributions to the body of knowledge on advanced, service-oriented RANs in two key core components. The first core component pertains to improving fronthaul efficiency, resiliency, flexibility, and latency performance with a cross-layer integration of Analog-Option-9 function split in the flexible fronthaul paradigm. Within the folds of that, the novel cross-layer digital-analog integration is experimentally investigated to pave the way for promising analog technologies to find their niche in 5G-and-beyond. The second core component is related to the design of lightweight, fronthaul-positioned multi-access edge computing (MEC) units to host Cooperative-URLLC applications at the edge of the fronthaul. Hence, from the vertical perspective, the dissertation provides solutions to support general URLLC applications and the Cooperative-URLLC variation by shrinking and eliminating latency sources at the Top-of-RAN and Low-RAN segments of advanced RANs.Ph.D

    Integrated IT and SDN Orchestration of multi-domain multi-layer transport networks

    Get PDF
    Telecom operators networks' management and control remains partitioned by technology, equipment supplier and networking layer. In some segments, the network operations are highly costly due to the need of the individual, and even manual, configuration of the network equipment by highly specialized personnel. In multi-vendor networks, expensive and never ending integration processes between Network Management Systems (NMSs) and the rest of systems (OSSs, BSSs) is a common situation, due to lack of adoption of standard interfaces in the management systems of the different equipment suppliers. Moreover, the increasing impact of the new traffic flows introduced by the deployment of massive Data Centers (DCs) is also imposing new challenges that traditional networking is not ready to overcome. The Fifth Generation of Mobile Technology (5G) is also introducing stringent network requirements such as the need of connecting to the network billions of new devices in IoT paradigm, new ultra-low latency applications (i.e., remote surgery) and vehicular communications. All these new services, together with enhanced broadband network access, are supposed to be delivered over the same network infrastructure. In this PhD Thesis, an holistic view of Network and Cloud Computing resources, based on the recent innovations introduced by Software Defined Networking (SDN), is proposed as the solution for designing an end-to-end multi-layer, multi-technology and multi-domain cloud and transport network management architecture, capable to offer end-to-end services from the DC networks to customers access networks and the virtualization of network resources, allowing new ways of slicing the network resources for the forthcoming 5G deployments. The first contribution of this PhD Thesis deals with the design and validation of SDN based network orchestration architectures capable to improve the current solutions for the management and control of multi-layer, multi-domain backbone transport networks. These problems have been assessed and progressively solved by different control and management architectures which has been designed and evaluated in real evaluation environments. One of the major findings of this work has been the need of developed a common information model for transport network's management, capable to describe the resources and services of multilayer networks. In this line, the Control Orchestration Protocol (COP) has been proposed as a first contriution towards an standard management interface based on the main principles driven by SDN. Furthermore, this PhD Thesis introduces a novel architecture capable to coordinate the management of IT computing resources together with inter- and intra-DC networks. The provisioning and migration of virtual machines together with the dynamic reconfiguration of the network has been successfully demonstrated in a feasible timescale. Moreover, a resource optimization engine is introduced in the architecture to introduce optimization algorithms capable to solve allocation problems such the optimal deployment of Virtual Machine Graphs over different DCs locations minimizing the inter-DC network resources allocation. A baseline blocking probability results over different network loads are also presented. The third major contribution is the result of the previous two. With a converged cloud and network infrastructure controlled and operated jointly, the holistic view of the network allows the on-demand provisioning of network slices consisting of dedicated network and cloud resources over a distributed DC infrastructure interconnected by an optical transport network. The last chapters of this thesis discuss the management and orchestration of 5G slices based over the control and management components designed in the previous chapters. The design of one of the first network slicing architectures and the deployment of a 5G network slice in a real Testbed, is one of the major contributions of this PhD Thesis.La gestión y el control de las redes de los operadores de red (Telcos), todavía hoy, está segmentado por tecnología, por proveedor de equipamiento y por capa de red. En algunos segmentos (por ejemplo en IP) la operación de la red es tremendamente costosa, ya que en muchos casos aún se requiere con guración individual, e incluso manual, de los equipos por parte de personal altamente especializado. En redes con múltiples proveedores, los procesos de integración entre los sistemas de gestión de red (NMS) y el resto de sistemas (p. ej., OSS/BSS) son habitualmente largos y extremadamente costosos debido a la falta de adopción de interfaces estándar por parte de los diferentes proveedores de red. Además, el impacto creciente en las redes de transporte de los nuevos flujos de tráfico introducidos por el despliegue masivo de Data Centers (DC), introduce nuevos desafíos que las arquitecturas de gestión y control de las redes tradicionales no están preparadas para afrontar. La quinta generación de tecnología móvil (5G) introduce nuevos requisitos de red, como la necesidad de conectar a la red billones de dispositivos nuevos (Internet de las cosas - IoT), aplicaciones de ultra baja latencia (p. ej., cirugía a distancia) y las comunicaciones vehiculares. Todos estos servicios, junto con un acceso mejorado a la red de banda ancha, deberán ser proporcionados a través de la misma infraestructura de red. Esta tesis doctoral propone una visión holística de los recursos de red y cloud, basada en los principios introducidos por Software Defined Networking (SDN), como la solución para el diseño de una arquitectura de gestión extremo a extremo (E2E) para escenarios de red multi-capa y multi-dominio, capaz de ofrecer servicios de E2E, desde las redes intra-DC hasta las redes de acceso, y ofrecer ademas virtualización de los recursos de la red, permitiendo nuevas formas de segmentación en las redes de transporte y la infrastructura de cloud, para los próximos despliegues de 5G. La primera contribución de esta tesis consiste en la validación de arquitecturas de orquestración de red, basadas en SDN, para la gestión y control de redes de transporte troncales multi-dominio y multi-capa. Estos problemas (gestion de redes multi-capa y multi-dominio), han sido evaluados de manera incremental, mediante el diseño y la evaluación experimental, en entornos de pruebas reales, de diferentes arquitecturas de control y gestión. Uno de los principales hallazgos de este trabajo ha sido la necesidad de un modelo de información común para las interfaces de gestión entre entidades de control SDN. En esta línea, el Protocolo de Control Orchestration (COP) ha sido propuesto como interfaz de gestión de red estándar para redes SDN de transporte multi-capa. Además, en esta tesis presentamos una arquitectura capaz de coordinar la gestión de los recursos IT y red. La provisión y la migración de máquinas virtuales junto con la reconfiguración dinámica de la red, han sido demostradas con éxito en una escala de tiempo factible. Además, la arquitectura incorpora una plataforma para la ejecución de algoritmos de optimización de recursos capaces de resolver diferentes problemas de asignación, como el despliegue óptimo de Grafos de Máquinas Virtuales (VMG) en diferentes DCs que minimizan la asignación de recursos de red. Esta tesis propone una solución para este problema, que ha sido evaluada en terminos de probabilidad de bloqueo para diferentes cargas de red. La tercera contribución es el resultado de las dos anteriores. La arquitectura integrada de red y cloud presentada permite la creación bajo demanda de "network slices", que consisten en sub-conjuntos de recursos de red y cloud dedicados para diferentes clientes sobre una infraestructura común. El diseño de una de las primeras arquitecturas de "network slicing" y el despliegue de un "slice" de red 5G totalmente operativo en un Testbed real, es una de las principales contribuciones de esta tesis.La gestió i el control de les xarxes dels operadors de telecomunicacions (Telcos), encara avui, està segmentat per tecnologia, per proveïdors d’equipament i per capes de xarxa. En alguns segments (Per exemple en IP) l’operació de la xarxa és tremendament costosa, ja que en molts casos encara es requereix de configuració individual, i fins i tot manual, dels equips per part de personal altament especialitzat. En xarxes amb múltiples proveïdors, els processos d’integració entre els Sistemes de gestió de xarxa (NMS) i la resta de sistemes (per exemple, Sistemes de suport d’operacions - OSS i Sistemes de suport de negocis - BSS) són habitualment interminables i extremadament costosos a causa de la falta d’adopció d’interfícies estàndard per part dels diferents proveïdors de xarxa. A més, l’impacte creixent en les xarxes de transport dels nous fluxos de trànsit introduïts pel desplegament massius de Data Centers (DC), introdueix nous desafiaments que les arquitectures de gestió i control de les xarxes tradicionals que no estan llestes per afrontar. Per acabar de descriure el context, la cinquena generació de tecnologia mòbil (5G) també presenta nous requisits de xarxa altament exigents, com la necessitat de connectar a la xarxa milers de milions de dispositius nous, dins el context de l’Internet de les coses (IOT), o les noves aplicacions d’ultra baixa latència (com ara la cirurgia a distància) i les comunicacions vehiculars. Se suposa que tots aquests nous serveis, juntament amb l’accés millorat a la xarxa de banda ampla, es lliuraran a través de la mateixa infraestructura de xarxa. Aquesta tesi doctoral proposa una visió holística dels recursos de xarxa i cloud, basada en els principis introduïts per Software Defined Networking (SDN), com la solució per al disseny de una arquitectura de gestió extrem a extrem per a escenaris de xarxa multi-capa, multi-domini i consistents en múltiples tecnologies de transport. Aquesta arquitectura de gestió i control de xarxes transport i recursos IT, ha de ser capaç d’oferir serveis d’extrem a extrem, des de les xarxes intra-DC fins a les xarxes d’accés dels clients i oferir a més virtualització dels recursos de la xarxa, obrint la porta a noves formes de segmentació a les xarxes de transport i la infrastructura de cloud, pels propers desplegaments de 5G. La primera contribució d’aquesta tesi doctoral consisteix en la validació de diferents arquitectures d’orquestració de xarxa basades en SDN capaces de millorar les solucions existents per a la gestió i control de xarxes de transport troncals multi-domini i multicapa. Aquests problemes (gestió de xarxes multicapa i multi-domini), han estat avaluats de manera incremental, mitjançant el disseny i l’avaluació experimental, en entorns de proves reals, de diferents arquitectures de control i gestió. Un dels principals troballes d’aquest treball ha estat la necessitat de dissenyar un model d’informació comú per a les interfícies de gestió de xarxes, capaç de descriure els recursos i serveis de la xarxes transport multicapa. En aquesta línia, el Protocol de Control Orchestration (COP, en les seves sigles en anglès) ha estat proposat en aquesta Tesi, com una primera contribució cap a una interfície de gestió de xarxa estàndard basada en els principis bàsics de SDN. A més, en aquesta tesi presentem una arquitectura innovadora capaç de coordinar la gestió de els recursos IT juntament amb les xarxes inter i intra-DC. L’aprovisionament i la migració de màquines virtuals juntament amb la reconfiguració dinàmica de la xarxa, ha estat demostrat amb èxit en una escala de temps factible. A més, l’arquitectura incorpora una plataforma per a l’execució d’algorismes d’optimització de recursos, capaços de resoldre diferents problemes d’assignació, com el desplegament òptim de Grafs de Màquines Virtuals (VMG) en diferents ubicacions de DC que minimitzen la assignació de recursos de xarxa entre DC. També es presenta una solució bàsica per a aquest problema, així com els resultats de probabilitat de bloqueig per a diferents càrregues de xarxa. La tercera contribució principal és el resultat dels dos anteriors. Amb una infraestructura de xarxa i cloud convergent, controlada i operada de manera conjunta, la visió holística de la xarxa permet l’aprovisionament sota demanda de "network slices" que consisteixen en subconjunts de recursos d’xarxa i cloud, dedicats per a diferents clients, sobre una infraestructura de Data Centers distribuïda i interconnectada per una xarxa de transport òptica. Els últims capítols d’aquesta tesi tracten sobre la gestió i organització de "network slices" per a xarxes 5G en funció dels components de control i administració dissenyats i desenvolupats en els capítols anteriors. El disseny d’una de les primeres arquitectures de "network slicing" i el desplegament d’un "slice" de xarxa 5G totalment operatiu en un Testbed real, és una de les principals contribucions d’aquesta tesi.Postprint (published version

    Enabling Technology in Optical Fiber Communications: From Device, System to Networking

    Get PDF
    This book explores the enabling technology in optical fiber communications. It focuses on the state-of-the-art advances from fundamental theories, devices, and subsystems to networking applications as well as future perspectives of optical fiber communications. The topics cover include integrated photonics, fiber optics, fiber and free-space optical communications, and optical networking

    Resource Management in Softwarized Networks

    Get PDF
    Communication networks are undergoing a major transformation through softwarization, which is changing the way networks are designed, operated, and managed. Network Softwarization is an emerging paradigm where software controls the treatment of network flows, adds value to these flows by software processing, and orchestrates the on-demand creation of customized networks to meet the needs of customer applications. Software-Defined Networking (SDN), Network Function Virtualization (NFV), and Network Virtualization are three cornerstones of the overall transformation trend toward network softwarization. Together, they are empowering network operators to accelerate time-to-market for new services, diversify the supply chain for networking hardware and software, bringing the benefits of agility, economies of scale, and flexibility of cloud computing to networks. The enhanced programmability enabled by softwarization creates unique opportunities for adapting network resources in support of applications and users with diverse requirements. To effectively leverage the flexibility provided by softwarization and realize its full potential, it is of paramount importance to devise proper mechanisms for allocating resources to different applications and users and for monitoring their usage over time. The overarching goal of this dissertation is to advance state-of-the-art in how resources are allocated and monitored and build the foundation for effective resource management in softwarized networks. Specifically, we address four resource management challenges in three key enablers of network softwarization, namely SDN, NFV, and network virtualization. First, we challenge the current practice of realizing network services with monolithic software network functions and propose a microservice-based disaggregated architecture enabling finer-grained resource allocation and scaling. Then, we devise optimal solutions and scalable heuristics for establishing virtual networks with guaranteed bandwidth and guaranteed survivability against failure on multi-layer IP-over-Optical and single-layer IP substrate network, respectively. Finally, we propose adaptive sampling mechanisms for balancing the overhead of softwarized network monitoring and the accuracy of the network view constructed from monitoring data
    corecore