9 research outputs found

    Gait generation for underactuated compass-like robots using dissipative forces in the controller

    Get PDF
    This work addresses the problem of gait generation in underactuated compass-like biped robots using dissipative forces in the controller. Three different controllers are presented. The first one is a simultaneous interconnection and damping assignment passivity-based control with dissipative forces. The second one is an energy pumping-and-damping control, while the third one is an energy pumping or damping control action. Numerical case studies, comparisons, and critical discussions evaluate the performance of the proposed approaches

    Energy pumping-and-damping for gait robustification of underactuated planar biped robots within the hybrid zero dynamics framework

    Get PDF
    This paper addresses the robust gait control for planar and passive biped robots using approaches based on energy properties. Energy pumping-and-damping passivity-based control is used to increase the robustness against uncertainties on the initial conditions of the passive gait exhibited by planar biped robots. The stability analysis is carried out by exploiting the system’s passivity and the hybrid zero dynamics method. Besides, the proposed approach is applied to new gaits that are generated using interconnection and damping assignment passivity-based control. The performance of the proposed design is evaluated through numerical simulations and compared with an existing technique

    Energy Shaping of Underactuated Systems via Interconnection and Damping Assignment Passivity-Based Control with Applications to Planar Biped Robots

    Get PDF
    The sought goal of this thesis is to show that total energy shaping is an effective and versatile tool to control underactuated mechanical systems. The performance of several approaches, rooted in the port-Hamiltonian formalism, are analyzed while tackling distinct control problems: i) equilibrium stabilization; ii) gait generation; iii) gait robustication. Firstly, a constructive solution to deal with interconnection and damping assignment passivity-based control (IDA-PBC) for underactuated two-degree-of-freedom mechanical systems is proposed. This strategy does not involve the resolution of any partial differential equation, since explicit solutions are given, while no singularities depending on generalized momenta are introduced by the controller. The methodology is applied to the stabilization of a translational oscillator with a rotational actuator system, as well as, to the gait generation for an underactuated compass-like biped robot (CBR). Then, the problem of gait generation is addressed using dissipative forces in the controller. In this sense, three distinct controllers are presented, namely simultaneous interconnection and damping assignment passivity-based control with dissipative forces, energy pumping-and-damping passivity-based control (EPD-PBC), and energy pumping-or-damping control. Finally, EPD-PBC is used to increase the robustness of the gait exhibited by the CBR over uncertainties on the initial conditions. The passivity of the system is exploited, as well as, its hybrid nature (using the hybrid zero dynamics method) to carry out the stability analysis. Besides, such an approach is applied to new gaits that are generated using IDA-PBC. Numerical case studies, comparisons, and critical discussions evaluate the performance of the proposed approaches

    Immersion and invariance orbital stabilization of underactuated mechanical systems with collocated pre-feedback

    Full text link
    In this note we study the generation of attractive oscillations of a class of mechanical systems with underactuation one. The proposed design consists of two terms, i.e., a partial linearizing state feedback, and an immersion and invariance orbital stabilization controller. The first step is adopted to simplify analysis and design, however, bringing an additional difficulty that the model loses its Euler-Lagrange structure after the collocated pre-feedback. To address this, we propose a constructive solution to the orbital stabilization problem via a smooth controller in an analytic form, and the model class identified in the paper is characterized via some easily apriori verifiable assumptions on the inertia matrix and the potential energy function

    Simultaneous Position-and-Stiffness Control of Underactuated Antagonistic Tendon-Driven Continuum Robots

    Full text link
    Continuum robots have gained widespread popularity due to their inherent compliance and flexibility, particularly their adjustable levels of stiffness for various application scenarios. Despite efforts to dynamic modeling and control synthesis over the past decade, few studies have focused on incorporating stiffness regulation in their feedback control design; however, this is one of the initial motivations to develop continuum robots. This paper aims to address the crucial challenge of controlling both the position and stiffness of a class of highly underactuated continuum robots that are actuated by antagonistic tendons. To this end, the first step involves presenting a high-dimensional rigid-link dynamical model that can analyze the open-loop stiffening of tendon-driven continuum robots. Based on this model, we propose a novel passivity-based position-and-stiffness controller adheres to the non-negative tension constraint. To demonstrate the effectiveness of our approach, we tested the theoretical results on our continuum robot, and the experimental results show the efficacy and precise performance of the proposed methodology

    On the equivalence of contraction and Koopman approaches for nonlinear stability and control

    Full text link
    In this paper we prove new connections between two frameworks for analysis and control of nonlinear systems: the Koopman operator framework and contraction analysis. Each method, in different ways, provides exact and global analyses of nonlinear systems by way of linear systems theory. The main results of this paper show equivalence between contraction and Koopman approaches for a wide class of stability analysis and control design problems. In particular: stability or stablizability in the Koopman framework implies the existence of a contraction metric (resp. control contraction metric) for the nonlinear system. Further in certain cases the converse holds: contraction implies the existence of a set of observables with which stability can be verified via the Koopman framework. We provide results for the cases of autonomous and time-varying systems, as well as orbital stability of limit cycles. Furthermore, the converse claims are based on a novel relation between the Koopman method and construction of a Kazantzis-Kravaris-Luenberger observer. We also provide a byproduct of the main results, that is, a new method to learn contraction metrics from trajectory data via linear system identification

    Unknown Piecewise Constant Parameters Identification with Exponential Rate of Convergence

    Full text link
    The scope of this research is the identification of unknown piecewise constant parameters of linear regression equation under the finite excitation condition. Compared to the known methods, to make the computational burden lower, only one model to identify all switching states of the regression is used in the developed procedure with the following two-fold contribution. First of all, we propose a new truly online estimation algorithm based on a well-known DREM approach to detect switching time and preserve time alertness with adjustable detection delay. Secondly, despite the fact that a switching signal function is unknown, the adaptive law is derived that provides global exponential convergence of the regression parameters to their true values in case the regressor is finitely exciting somewhere inside the time interval between two consecutive parameters switches. The robustness of the proposed identification procedure to the influence of external disturbances is analytically proved. Its effectiveness is demonstrated via numerical experiments, in which both abstract regressions and a second-order plant model are used.Comment: 31 pages, 12 figure

    Orbital stabilization of nonlinear systems via Mexican sombrero energy shaping and pumping-and-damping injection

    No full text
    International audienceIn this paper we show that a slight modification to the widely popular interconnection and damping assignment passivity-based control method – originally proposed for stabilization of equilibria of nonlinear systems – allows us to provide a solution to the more challenging orbital stabilization problem. Two different, though related, ways how this procedure can be applied are proposed. First, the assignment of an energy function that has a minimum in a closed curve, i.e., with the shape of a Mexican sombrero. Second, the use of a damping matrix that changes “sign” according to the position of the state trajectory relative to the desired orbit, that is, pumping or dissipating energy. The proposed methodologies are illustrated with the example of the induction motor and prove that it yields the industry standard field oriented control
    corecore