8,450 research outputs found

    The physics of angular momentum radio

    Full text link
    Wireless communications, radio astronomy and other radio science applications are predominantly implemented with techniques built on top of the electromagnetic linear momentum (Poynting vector) physical layer. As a supplement and/or alternative to this conventional approach, techniques rooted in the electromagnetic angular momentum physical layer have been advocated, and promising results from proof-of-concept radio communication experiments using angular momentum were recently published. This sparingly exploited physical observable describes the rotational (spinning and orbiting) physical properties of the electromagnetic fields and the rotational dynamics of the pertinent charge and current densities. In order to facilitate the exploitation of angular momentum techniques in real-world implementations, we present a systematic, comprehensive theoretical review of the fundamental physical properties of electromagnetic angular momentum observable. Starting from an overview that puts it into its physical context among the other Poincar\'e invariants of the electromagnetic field, we describe the multi-mode quantized character and other physical properties that sets electromagnetic angular momentum apart from the electromagnetic linear momentum. These properties allow, among other things, a more flexible and efficient utilization of the radio frequency spectrum. Implementation aspects are discussed and illustrated by examples based on analytic and numerical solutions.Comment: Fixed LaTeX rendering errors due to inconsistencies between arXiv's LaTeX machine and texlive in OpenSuSE 13.

    Multiplication and division of the orbital angular momentum of light with diffractive transformation optics

    Get PDF
    We present a method to efficiently multiply or divide the orbital angular momentum (OAM) of light beams using a sequence of two optical elements. The key-element is represented by an optical transformation mapping the azimuthal phase gradient of the input OAM beam onto a circular sector. By combining multiple circular-sector transformations into a single optical element, it is possible to perform the multiplication of the value of the input OAM state by splitting and mapping the phase onto complementary circular sectors. Conversely, by combining multiple inverse transformations, the division of the initial OAM value is achievable, by mapping distinct complementary circular sectors of the input beam into an equal number of circular phase gradients. The optical elements have been fabricated in the form of phase-only diffractive optics with high-resolution electron-beam lithography. Optical tests confirm the capability of the multiplier optics to perform integer multiplication of the input OAM, while the designed dividers are demonstrated to correctly split up the input beam into a complementary set of OAM beams. These elements can find applications for the multiplicative generation of higher-order OAM modes, optical information processing based on OAM-beams transmission, and optical routing/switching in telecom.Comment: 28 pages, 10 figure

    Preparation of circular Rydberg states in helium using the crossed fields method

    Get PDF
    Helium atoms have been prepared in the circular n=55,=54,m=+54|n=55,\ell=54,m_{\ell}=+54\rangle Rydberg state using the crossed electric and magnetic fields method. The atoms, initially travelling in pulsed supersonic beams, were photoexcited from the metastable 1s2s\,^3S_1 level to the outermost, m=0m_{\ell}=0 Rydberg-Stark state with n=55n=55 in the presence of a strong electric field and weak perpendicular magnetic field. Following excitation, the electric field was adiabatically switched off causing the atoms to evolve into the circular state with m=+54m_{\ell}=+54 defined with respect to the magnetic field quantization axis. The circular states were detected by ramped electric field ionization along the magnetic field axis. The dependence of the circular state production efficiency on the strength of the excitation electric field, and the electric-field switch-off time was studied, and microwave spectroscopy of the circular-to-circular 55,54,+5456,55,+55|55,54,+54\rangle\rightarrow|56,55,+55\rangle transition at 38.5\sim38.5~GHz was performed.Comment: 10 pages, 8 figure

    Orbital Angular Momentum (OAM) of Rotating Modes Driven by Electrons in Electron Cyclotron Masers

    Get PDF
    The well-defined orbital angular momentum (OAM) of rotating cavity modes operating near the cutoff frequency excited by gyrating electrons in a high-power electron cyclotron maser (ECM)-a gyrotron-has been derived by photonic and electromagnetic wave approaches. A mode generator was built with a high-precision 3D printing technique to mimic the rotating gyrotron modes for precise low-power measurements and shows clear natural production of higher-order OAM modes. Cold-test measurements of higher-order OAM mode generation promise the realization towards wireless long-range communications using high-power ECMs

    Parallel axis theorem for free-space electron wavefunctions

    Get PDF
    We consider the orbital angular momentum of a free electron vortex moving in a uniform magnetic field. We identify three contributions to this angular momentum: the canonical orbital angular momentum associated with the vortex, the angular momentum of the cyclotron orbit of the wavefunction, and a diamagnetic angular momentum. The cyclotron and diamagnetic angular momenta are found to be separable according to the parallel axis theorem. This means that rotations can occur with respect to two or more axes simultaneously, which can be observed with superpositions of vortex states

    On Small Beams with Large Topological Charge II: Photons, Electrons and Gravitational Waves

    Get PDF
    Beams of light with a large topological charge significantly change their spatial structure when they are focused strongly. Physically, it can be explained by an emerging electromagnetic field component in the direction of propagation, which is neglected in the simplified scalar wave picture in optics. Here we ask: Is this a specific photonic behavior, or can similar phenomena also be predicted for other species of particles? We show that the same modification of the spatial structure exists for relativistic electrons as well as for focused gravitational waves. However, this is for different physical reasons: For electrons, which are described by the Dirac equation, the spatial structure changes due to a Spin-Orbit coupling in the relativistic regime. In gravitational waves described with linearized general relativity, the curvature of space-time between the transverse and propagation direction leads to the modification of the spatial structure. Thus, this universal phenomenon exists for both massive and massless elementary particles with Spin 1/2, 1 and 2. It would be very interesting whether other types of particles such as composite systems (neutrons or C60_{60}) or neutrinos show a similar behaviour and how this phenomenon can be explained in a unified physical way.Comment: 8 pages, 3 figure
    corecore