926 research outputs found

    Performances of a GNSS receiver for space-based applications

    Get PDF
    Space Vehicle (SV) life span depends on its station keeping capability. Station keeping is the ability of the vehicle to maintain position and orientation. Due to external perturbations, the trajectory of the SV derives from the ideal orbit. Actual positioning systems for satellites are mainly based on ground equipment, which means heavy infrastructures. Autonomous positioning and navigation systems using Global Navigation Satellite Systems (GNSS) can then represent a great reduction in platform design and operating costs. Studies have been carried out and the first operational systems, based on GPS receivers, become available. But better availability of service could be obtained considering a receiver able to process GPS and Galileo signals. Indeed Galileo system will be compatible with the current and the modernized GPS system in terms of signals representation and navigation data. The greater availability obtained with such a receiver would allow significant increase of the number of point solutions and performance enhancement. For a mid-term perspective Thales Alenia Space finances a PhD to develop the concept of a reconfigurable receiver able to deal with both the GPS system and the future Galileo system. In this context, the aim of this paper is to assess the performances of a receiver designed for Geosynchronous Earth Orbit (GEO) applications. It is shown that high improvements are obtained with a receiver designed to track both GPS and Galileo satellites. The performance assessments have been used to define the specifications of the future satellite GNSS receiver

    Space Object Self-Tracker On-Board Orbit Determination Analysis

    Get PDF
    Due to the United States\u27 growing dependence on space based assets and the in- creasing number of resident space objects (RSO), improvement of Space Situational Awareness (SSA) capabilities is more necessary than ever. As a way to aid in this need, the Air Force Institute of Technology (AFIT) is developing the Space Object Self-Tracker (SOS) as a proof-of-concept experimental satellite for RSO precision tracking and collision avoidance system in Low Earth Orbit (LEO). Specifically, SOS will use Global Positioning System (GPS) position estimates for on-board orbit de- termination. Currently, SOS will use the Simplified General Perturbations-4 (SGP4) algorithm as its orbit determination algorithm. This research investigates the use of a modified Special Perturbations (SP) orbit determination algorithm as an alternative means for on-board orbit determination (OD) for the SOS experiment. The research is focused on evaluating performance gains and studying the effects of using GPS navigation solutions as the input observation data on the achievable accuracy of the SP algorithm. The SP OD algorithm was evaluated in testing both simulated and real world observation data. The position estimates generated by the SP algorithm from both GPS navigation solution observations and observations delivered in the J2000 inertial frame were analyzed to determine the effects of the SP algorithm\u27s achievable performance. The accuracy of position estimates generated from the SP algorithm were also compared to those generated by SGP4 algorithm. Analysis leads to the conclusion that the SP algorithm will be beneficial in providing more accurate position estimates for observed GPS navigation solutions. However, the SP algorithm will require improvements to the dynamics modeled in the SP algorithm by specifically including more perturbations such as those due to air drag

    GNSS transpolar earth reflectometry exploriNg system (G-TERN): mission concept

    Get PDF
    The global navigation satellite system (GNSS) Transpolar Earth Reflectometry exploriNg system (G-TERN) was proposed in response to ESA's Earth Explorer 9 revised call by a team of 33 multi-disciplinary scientists. The primary objective of the mission is to quantify at high spatio-temporal resolution crucial characteristics, processes and interactions between sea ice, and other Earth system components in order to advance the understanding and prediction of climate change and its impacts on the environment and society. The objective is articulated through three key questions. 1) In a rapidly changing Arctic regime and under the resilient Antarctic sea ice trend, how will highly dynamic forcings and couplings between the various components of the ocean, atmosphere, and cryosphere modify or influence the processes governing the characteristics of the sea ice cover (ice production, growth, deformation, and melt)? 2) What are the impacts of extreme events and feedback mechanisms on sea ice evolution? 3) What are the effects of the cryosphere behaviors, either rapidly changing or resiliently stable, on the global oceanic and atmospheric circulation and mid-latitude extreme events? To contribute answering these questions, G-TERN will measure key parameters of the sea ice, the oceans, and the atmosphere with frequent and dense coverage over polar areas, becoming a “dynamic mapper”of the ice conditions, the ice production, and the loss in multiple time and space scales, and surrounding environment. Over polar areas, the G-TERN will measure sea ice surface elevation (<;10 cm precision), roughness, and polarimetry aspects at 30-km resolution and 3-days full coverage. G-TERN will implement the interferometric GNSS reflectometry concept, from a single satellite in near-polar orbit with capability for 12 simultaneous observations. Unlike currently orbiting GNSS reflectometry missions, the G-TERN uses the full GNSS available bandwidth to improve its ranging measurements. The lifetime would be 2025-2030 or optimally 2025-2035, covering key stages of the transition toward a nearly ice-free Arctic Ocean in summer. This paper describes the mission objectives, it reviews its measurement techniques, summarizes the suggested implementation, and finally, it estimates the expected performance.Peer ReviewedPostprint (published version

    Introduction to Navigation Systems

    Get PDF
    Navigation is the method for determining position, speed, and direction of the object. That is mainly classified into two groups: physical model-based methods (PMMs) and external data-based methods (EDMs). Examples of PMMs are inertial navigation systems (INS) and dead-reckoning navigation. They determine the existing position of an object by measuring various changes in its state, such as velocity and acceleration. Representative EDMs is the global navigation satellite system (GNSS). In the case of spacecraft, auxiliary navigation systems using data compression were proposed. In the case of low earth orbit satellites, the deviations between nominal and real orbit are compressed in the form of Fourier coefficients by using the periodic characteristics of the trajectory. In the event of Deep space explorer, B-spline based orbit compression and transmission was proposed

    Tropospheric Delay Calibration System Performance During the First Two BepiColombo Solar Conjunctions

    Get PDF
    Media propagation delay and delay-rate induced by the water vapor within the Earth's troposphere represent one of the main error sources for radiometric measurements in deep space. In preparation for the BepiColombo and JUICE missions, the European Space Agency has installed and operates the prototype of a tropospheric delay calibration system (TDCS) at the DSA-3 ground station located in MalargĂĽe, Argentina. An initial characterization of the TDCS performance was realized using two-way Doppler measurements at X-band to perform the orbit determination of the Gaia spacecraft. This work will further characterize the system by analyzing two-way Doppler and range data at X- and Ka-band for 31 tracking passes of the BepiColombo spacecraft, which were recorded between March 2021 and February 2022 during the first two solar conjunction experiments. The performance exceeds the expectations based on the previous analysis, with a reduction of the Doppler noise of 51% on average and up to 73% when using the TDCS measurements in place of standard calibrations based on global navigation satellite system data. Furthermore, the campaign serves as validation of the TDCS operations during superior solar conjunctions, with most of the tracking passes at low elongation now satisfying the Mercury orbiter radioscience experiment requirements on two-way Doppler stability. These results, which are in line with those of similar instruments installed at other Deep Space Network antennas, are obtained using a commercial microwave radiometer with significantly lower installation and maintenance costs

    Precise orbit determination of LEO satellites : a systematic review

    Get PDF
    The need for precise orbit determination (POD) has grown significantly due to the increased amount of space-based activities taking place at an accelerating pace. Accurate POD positively contributes to achieving the requirements of Low-Earth Orbit (LEO) satellite missions, including improved tracking, reliability and continuity. This research aims to systematically analyze the LEO–POD in four aspects: (i) data sources used; (ii) POD technique implemented; (iii) validation method applied; (iv) accuracy level obtained. We also present the most used GNSS systems, satellite missions, processing procedures and ephemeris. The review includes studies on LEO–POD algorithms/methods and software published in the last two decades (2000–2021). To this end, 137 primary studies relevant to achieving the objective of this research were identified. After the investigation of these primary studies, it was found that several types of POD techniques have been employed in the POD of LEO satellites, with a clear trend observed for techniques using reduced-dynamic model, least-squares solvers, dual-frequency signals with undifferenced phase and code observations in post-processing mode. This review provides an understanding of the various POD techniques, dataset utilized, validation techniques, and accuracy level of LEO satellites, which have interest to developers of small satellites, new researchers and practitioners.© The Author(s) 2023. This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.fi=vertaisarvioitu|en=peerReviewed

    Satellite Formation-Flying and Rendezvous

    Get PDF
    GNSS has come to play an increasingly important role in satellite formation-flying and rendezvous applications. In the last decades, the use of GNSS measurements has provided the primary technique for determining the relative position of cooperative co-orbiting satellites in low Earth orbit

    Performance Characterization of ESA's Tropospheric Delay Calibration System for Advanced Radio Science Experiments

    Get PDF
    Media propagation noises are amongst the main error sources of radiometric observables for deep space missions, with fluctuations of the tropospheric excess path length representing a relevant contributor to the Doppler noise budget. Microwave radiometers currently represent the most accurate instruments for the estimation of the tropospheric delay and delay rate along a slant direction. A prototype of a tropospheric delay calibration system (TDCS), using a 14 channel Ka/V band microwave radiometer, has been developed under a European Space Agency contract and installed at the deep space ground station in MalargĂĽe, Argentina, in February 2019. After its commissioning, the TDCS has been involved in an extensive testbed campaign by recording a total of 44 tracking passes of the Gaia spacecraft, which were used to perform an orbit determination analysis. This work presents the first statistical characterization of the end-to-end performance of the TDCS prototype in an operational scenario. The results show that using TDCS-based calibrations instead of the standard GNSS-based calibrations leads to a significant reduction of the residual Doppler noise and instability
    • …
    corecore