3 research outputs found

    Model estimation, identification and inference for next-generation functional data and spatial data

    Get PDF
    This dissertation is composed of three research projects focused on model estimation, identification, and inference for next-generation functional data and spatial data. The first project deals with data that are collected on a count or binary response with spatial covariate information. In this project, we introduce a new class of generalized geoadditive models (GGAMs) for spatial data distributed over complex domains. Through a link function, the proposed GGAM assumes that the mean of the discrete response variable depends on additive univariate functions of explanatory variables and a bivariate function to adjust for the spatial effect. We propose a two-stage approach for estimating and making inferences of the components in the GGAM. In the first stage, the univariate components and the geographical component in the model are approximated via univariate polynomial splines and bivariate penalized splines over triangulation, respectively. In the second stage, local polynomial smoothing is applied to the cleaned univariate data to average out the variation of the first-stage estimators. We investigate the consistency of the proposed estimators and the asymptotic normality of the univariate components. We also establish the simultaneous confidence band for each of the univariate components. The performance of the proposed method is evaluated by two simulation studies and the crash counts data in the Tampa-St. Petersburg urbanized area in Florida. In the second project, motivated by recent work of analyzing data in the biomedical imaging studies, we consider a class of image-on-scalar regression models for imaging responses and scalar predictors. We propose to use flexible multivariate splines over triangulations to handle the irregular domain of the objects of interest on the images and other characteristics of images. The proposed estimators of the coefficient functions are proved to be root-nn consistent and asymptotically normal under some regularity conditions. We also provide a consistent and computationally efficient estimator of the covariance function. Asymptotic pointwise confidence intervals (PCIs) and data-driven simultaneous confidence corridors (SCCs) for the coefficient functions are constructed. A highly efficient and scalable estimation algorithm is developed. Monte Carlo simulation studies are conducted to examine the finite-sample performance of the proposed method. The proposed method is applied to the spatially normalized Positron Emission Tomography (PET) data of Alzheimer\u27s Disease Neuroimaging Initiative (ADNI). In the third project, we propose a heterogeneous functional linear model to simultaneously estimate multiple coefficient functions and identify groups, such that coefficient functions are identical within groups and distinct across groups. By borrowing information from relevant subgroups, our method enhances estimation efficiency while preserving heterogeneity. We use an adaptive fused lasso penalty to shrink subgroup coefficients to shared common values within each group. We also establish the theoretical properties of our adaptive fused lasso estimators. To enhance the computation efficiency and incorporate neighborhood information, we propose to use a graph-constrained adaptive lasso. A highly efficient and scalable estimation algorithm is developed. Monte Carlo simulation studies are conducted to examine the finite-sample performance of the proposed method. The proposed method is applied to a dataset of hybrid maize grain yields from the Genomes to Fields consortium

    ISBIS 2016: Meeting on Statistics in Business and Industry

    Get PDF
    This Book includes the abstracts of the talks presented at the 2016 International Symposium on Business and Industrial Statistics, held at Barcelona, June 8-10, 2016, hosted at the Universitat Politècnica de Catalunya - Barcelona TECH, by the Department of Statistics and Operations Research. The location of the meeting was at ETSEIB Building (Escola Tecnica Superior d'Enginyeria Industrial) at Avda Diagonal 647. The meeting organizers celebrated the continued success of ISBIS and ENBIS society, and the meeting draw together the international community of statisticians, both academics and industry professionals, who share the goal of making statistics the foundation for decision making in business and related applications. The Scientific Program Committee was constituted by: David Banks, Duke University Amílcar Oliveira, DCeT - Universidade Aberta and CEAUL Teresa A. Oliveira, DCeT - Universidade Aberta and CEAUL Nalini Ravishankar, University of Connecticut Xavier Tort Martorell, Universitat Politécnica de Catalunya, Barcelona TECH Martina Vandebroek, KU Leuven Vincenzo Esposito Vinzi, ESSEC Business Schoo
    corecore