566 research outputs found

    High-Q wavelength division multiplexed optoelectronic oscillator based on a cascaded multi-loop topology

    Get PDF
    A WDM optoelectronic oscillator (OEO) based on a cascaded optical multi-loop configuration and multiple photodiodes is proposed and demonstrated experimentally. By employing up to three lasers widely separated in wavelength along with two cascaded multi-loop fiber sections and two photodiodes, we demonstrate OEO topologies that scale up to six effective loops revealing an ultra-high quality factor in excess of 1010 and a phase noise performance down to −119 dBc/Hz at 10 kHz offset

    Multiphysics modelling of high-speed optoelectronic devices for silicon photonics platforms

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Photodiodes for Terahertz Applications

    Get PDF
    Terahertz generation using high-speed photodiodes has found commercial application in many areas ranging across spectroscopy, imaging and communications. In this paper we discuss the optimization of high-speed photodiodes in terms of bandwidth and output power. We identify some of the main limitations in the generation of high output power in the Terahertz frequency band. We present a modelling tool for the numerical evaluation of antenna coupled uni-travelling carrier photodiodes and experimental evaluation of the fabricated designs. We also present a thermal analysis of the photodiodes alongside pulsed measurements of the output power saturation

    Experimental characterization of CMOS photonic devices

    Get PDF
    Current electrical interconnects in super-computers and high-performance processors present a bottleneck in terms of bandwidth and power consumption. A migration to the optical domain in order to cope with the connectivity between units (e.g. CPUs and memory) is needed to overcome these issues. Zero-change CMOS photonic devices represent a very attractive solution to the design of optical on-chip links. This approach makes use of up-to-date CMOS process, having enormous benefits regarding integration with state-of-the-art electronics. Designing and characterizing zero-change CMOS photonic devices is key for the future of optical interconnects. This thesis presents the characterization both theoretical and experimental of a Silicon-Germanium ring resonator modulator. It represents the first ever depletion modulator up to the date using SiGe as an active material. Moreover, it shows the best wavelength shift reported so far for zero-change CMOS modulators, enhancing the shift of a pure Silicon device. The demonstration of this device begins a new era of optical modulator designs using silicon-germanium to enhance modulation efficiency, and therefore reduce power consumption.Las interconexiones eléctricas de supercomputadores y de microprocesadores de alto rendimiento representan actualmente un bottleneck en cuanto a ancho de banda y potencia consumida se refiere. Se necesita una migración hacia el dominio óptico, para realizar la conectividad entre las diferentes unidades (por ejemplo CPU y memoria), con tal de superar estas limitaciones. Los dispositivos fabricados con la tecnología zero-change CMOS representan una solución muy atractiva para el diseño de links ópticos dentro de un chip. Esta técnica utiliza procesos CMOS actuales, beneficiándose así enormemente de la fácil integración con dispositivos electrónicos actuales. Diseñar y caracterizar dispositivos trabajando con zero-change CMOS es clave para el futuro de las interconexiones ópticas. Esta tesis presenta la caracterización tanto teórica como experimental de un modulador tipo ring resonator de Silicon-Germanium. Es el primer modulador de depletion utilizando SiGe como un material activo. Además, este dispositivo muestra el desplazamiento en longitud de onda más grande publicado hasta la fecha, comparándolo con otros moduladores zero-change CMOS, mejorando el desplazamiento de dispositivos de puro silicio. La demostración de este dispositivo comienza una nueva era de diseños de moduladores ópticos que utilizaran silicon-germanium para mejorar la eficiencia de modulación, y por lo tanto reducir el consumo de potencia.Les interconnexions elèctriques de super-computadors i microprocessadors de alt rendiment representen actualment un coll d'ampolla en quant a ample de banda i potència consumida. Es necessita una migració cap al domini òptic, per realitzar la connectivitat entre les diferents unitats (per exemple entre la CPU i la memòria), per tal de superar aquests problemes. Els dispositius fabricats sota zero-change CMOS technology representen una solució molt atractiva al disseny de links òptics dins d'un xip. Aquesta tècnica utilitza processos CMOS actuals, tenint enormes beneficis en quant a la integració amb dispositius electrònics actuals. Dissenyar i caracteritzar dispositius treballant amb zero-change CMOS és clau pel futur de les interconnexions òptiques del futur. Aquesta tesi presenta la caracterització tant teòrica com experimental d'un modulador ring resonator de Silicon-Germanium. Representa el primer modulador de depletion usant SiGe con un material actiu. A més a més, aquest dispositiu mostra el desplaçament en longitud d'ona més gran publicat fins ara en qualsevol dispositiu zero-change CMOS, millorant el desplaçament de dispositius de pur silici. La demostració d'aquest dispositiu comença una nova era de dissenys de moduladors òptics que utilitzaran silicon-germanium per millorar l'eficiència de modulació i per tant per reduir el consum de potència

    Photo-detectors integrated with resonant tunneling diodes

    Get PDF
    We report on photo-detectors consisting of an optical waveguide that incorporates a resonant tunneling diode (RTD). Operating at wavelengths around 1.55 μm in the optical communications C band we achieve maximum sensitivities of around 0.29 A/W which is dependent on the bias voltage. This is due to the nature of RTD nonlinear current-voltage characteristic that has a negative differential resistance (NDR) region. The resonant tunneling diode photo-detector (RTD-PD) can be operated in either non-oscillating or oscillating regimes depending on the bias voltage quiescent point. The oscillating regime is apparent when the RTD-PD is biased in the NDR region giving rise to electrical gain and microwave self-sustained oscillations Taking advantage of the RTD’s NDR distinctive characteristics, we demonstrate efficient detection of gigahertz (GHz) modulated optical carriers and optical control of a RTD GHz oscillator. RTD-PD based devices can have applications in generation and optical control of GHz low-phase noise oscillators, clock recovery systems, and fiber optic enabled radio frequency communication systems.info:eu-repo/semantics/publishedVersio

    Photo-detectors integrated with resonant tunneling diodes

    Get PDF
    We report on photo-detectors consisting of an optical waveguide that incorporates a resonant tunneling diode (RTD). Operating at wavelengths around 1.55 m in the optical communications C band we achieve maximum sensitivities of around 0.29 A/W which is dependent on the bias voltage. This is due to the nature of RTD nonlinear current-voltage characteristic that has a negative differential resistance (NDR) region. The resonant tunneling diode photo-detector (RTD-PD) can be operated in either non-oscillating or oscillating regimes depending on the bias voltage quiescent point. The oscillating regime is apparent when the RTD-PD is biased in the NDR region giving rise to electrical gain and microwave self-sustained oscillations Taking advantage of the RTD's NDR distinctive characteristics, we demonstrate efficient detection of gigahertz (GHz) modulated optical carriers and optical control of a RTD GHz oscillator. RTD-PD based devices can have applications in generation and optical control of GHz low-phase noise oscillators, clock recovery systems, and fiber optic enabled radio frequency communication systems.FCT under the project WOWi [PTDC/EEA-TEL/100755/2008]; programme POCTI/FEDER [REEQ/1272/EEI/2005]; FCT Portugal [SFRH/BPD/84466/2012]info:eu-repo/semantics/publishedVersio

    Generation of Frequency Tunable and Low Phase Noise Micro- and Millimeter-Wave Signals using Photonic Technologies

    Get PDF
    The concept of generating micro- and millimeter-wave signals by optical means offers a variety of unique features compared to purely electronics such as high frequency tunability, ultra-wideband operation and the possibility to distribute micro- and millimeter-wave signals over kilometers of optical fiber to a remote site. These features make the photonic synthesizer concept a very interesting alternative for several applications in the micro- and millimeter-wave regime. This thesis focuses on the realization and characterization of different photonic synthesizer concepts for the optical generation of frequency tunable and low phase noise micro- and millimeter-wave signals. Advanced microwave photonic approaches utilizing external optical modulation and optical multiplication will be presented, offering high frequency optical millimeter-wave generation up to 110 GHz with superior performances in terms of maximum frequency tuning ranges and phase noise characteristics. In addition, the concept of a novel dual-loop optoelectronic oscillator will be presented that enables optical millimeter-wave signal generation without the need of any electronic reference oscillator. By using the developed dual-loop optoelectronic oscillator, microwave signal generation with tuning ranges in the gigahertz regime has been experimentally demonstrated for the first time.Das Konzept der optischen Mikro- und Millimeterwellen-Generation bietet gegenüber rein elektronischen Konzepten eine Vielzahl einzigartiger Möglichkeiten, bedingt durch die hohe Frequenzabstimmbarkeit, die extrem hohe Bandbreite sowie die Möglichkeit, Mikro- und Millimeterwellen-Signale über optische Fasern kilometerweit zu einer entfernten Station zu übertragen. Diese Eigenschaften machen das Konzept des photonischen Synthesizers zu einer sehr interessanten Alternative für viele Applikationen im Mikro- und Millimeterwellen-Bereich. Diese Arbeit beschäftigt sich mit der Realisierung und Charakterisierung verschiedener photonischer Synthesizer-Konzepte zur optischen Generation von frequenzabstimmbaren Mikro- und Millimeterwellen-Signalen mit geringem Phasenrauschen. Fortschrittliche photonische Konzepte unter Ausnutzung externer optischer Modulation sowie optischer Multiplikation werden vorgestellt. Diese Konzepte ermöglichen die optische Generierung hochfrequenter Millimeterwellen bis zu 110 GHz mit ausgezeichneter Performance in Bezug auf maximale Frequenzabstimmbarkeit sowie Phasenrauschen. Des Weiteren wurde ein neuartiges Konzept des optoelektronischen Oszillators, bestehend aus zwei Faserringen, vorgestellt, welches die Generierung von Millimeterwellen-Signalen ohne die Notwendigkeit eines elektronischen Referenzoszillators ermöglicht. Mit Hilfe des entwickelten optoelektronischen Oszillators wurde erstmals ein Mikrowellen-Signal mit einer Frequenzabstimmbarkeit im Gigahertz-Bereich experimentell erreicht

    Non-volatile heterogeneous III-V/Si photonics via optical charge-trap memory

    Full text link
    We demonstrate, for the first time, non-volatile charge-trap flash memory (CTM) co-located with heterogeneous III-V/Si photonics. The wafer-bonded III-V/Si CTM cell facilitates non-volatile optical functionality for a variety of devices such as Mach-Zehnder Interferometers (MZIs), asymmetric MZI lattice filters, and ring resonator filters. The MZI CTM exhibits full write/erase operation (100 cycles with 500 states) with wavelength shifts of Δλnon−volatile=1.16nm\Delta\lambda_{non-volatile} = 1.16 nm (Δneff,non−volatile 2.5×10−4\Delta n_{eff,non-volatile} ~ 2.5 \times 10^{-4}) and a dynamic power consumption << 20 pW (limited by measurement). Multi-bit write operation (2 bits) is also demonstrated and verified over a time duration of 24 hours and most likely beyond. The cascaded 2nd order ring resonator CTM filter exhibited an improved ER of ~ 7.11 dB compared to the MZI and wavelength shifts of Δλnon−volatile=0.041nm\Delta\lambda_{non-volatile} = 0.041 nm (Δneff,non−volatile=1.5×10−4\Delta n_{eff, non-volatile} = 1.5 \times 10^{-4}) with similar pW-level dynamic power consumption as the MZI CTM. The ability to co-locate photonic computing elements and non-volatile memory provides an attractive path towards eliminating the von-Neumann bottleneck
    • …
    corecore