2,263 research outputs found

    Analytical and numerical results for American style of perpetual put options through transformation into nonlinear stationary Black-Scholes equations

    Get PDF
    We analyze and calculate the early exercise boundary for a class of stationary generalized Black-Scholes equations in which the volatility function depends on the second derivative of the option price itself. A motivation for studying the nonlinear Black Scholes equation with a nonlinear volatility arises from option pricing models including, e.g., non-zero transaction costs, investors preferences, feedback and illiquid markets effects and risk from unprotected portfolio. We present a method how to transform the problem of American style of perpetual put options into a solution of an ordinary differential equation and implicit equation for the free boundary position. We finally present results of numerical approximation of the early exercise boundary, option price and their dependence on model parameters

    Comparison of analytical approximation formula and Newton's method for solving a class of nonlinear Black-Scholes parabolic equations

    Get PDF
    Market illiquidity, feedback effects, presence of transaction costs, risk from unprotected portfolio and other nonlinear effects in PDE-based option pricing models can be described by solutions to the generalized Black–Scholes parabolic equation with a diffusion term nonlinearly depending on the option price itself. In this paper, different linearization techniques such as Newton’s method and the analytic asymptotic approximation formula are adopted and compared for a wide class of nonlinear Black–Scholes equations including, in particular, the market illiquidity model and the risk-adjusted pricing model. Accuracy and time complexity of both numerical methods are compared. Furthermore, market quotes data was used to calibrate model parameters

    Computing option pricing models under transaction costs

    Get PDF
    AbstractThis paper deals with the Barles–Soner model arising in the hedging of portfolios for option pricing with transaction costs. This model is based on a correction volatility function Ψ solution of a nonlinear ordinary differential equation. In this paper we obtain relevant properties of the function Ψ which are crucial in the numerical analysis and computing of the underlying nonlinear Black–Scholes equation. Consistency and stability of the proposed numerical method are detailed and illustrative examples are given

    On the numerical solution of nonlinear Black-Scholes equations

    Get PDF
    Nonlinear Black–Scholes equations have been increasingly attracting interest over the last two decades, since they provide more accurate values by taking into account more realistic assumptions, such as transaction costs, risks from an unprotected portfolio, large investor’s preferences or illiquid markets, which may have an impact on the stock price, the volatility, the drift and the option price itself. In this paper we will be concerned with several models from the most relevant class of nonlinear Black–Scholes equations for European and American options with a volatility depending on different factors, such as the stock price, the time, the option price and its derivatives due to transaction costs. We will analytically approach the option price by transforming the problem for a European Call option into a convection-diffusion equation with a nonlinear term and the free boundary problem for an American Call option into a fully nonlinear nonlocal parabolic equation defined on a fixed domain following Ševčovič’s idea. Finally, we will present the results of different numerical discretization schemes for European options for various volatility models including the Leland model, the Barles and Soner model and the Risk adjusted pricing methodology model

    Fixed domain transformations and split-step finite difference schemes for Nonlinear Black-Scholes equations for American Options

    Get PDF
    Due to transaction costs, illiquid markets, large investors or risks from an unprotected portfolio the assumptions in the classical Black-Scholes model become unrealistic and the model results in strongly or fully nonlinear, possibly degenerate, parabolic diffusion-convection equations, where the stock price, volatility, trend and option price may depend on the time, the stock price or the option price itself. In this chapter we will be concerned with several models from the most relevant class of nonlinear Black-Scholes equations for American options with a volatility depending on different factors, such as the stock price, the time, the option price and its derivatives. We will analytically approach the option price by following the ideas proposed by Ševčovič and transforming the free boundary problem into a fully nonlinear nonlocal parabolic equation defined on a fixed, but unbounded domain. Finally, we will present the results of a split-step finite difference schemes for various volatility models including the Leland model, the Barles and Soner model and the Risk adjusted pricing methodology model

    Nonlinear Parabolic Equations arising in Mathematical Finance

    Full text link
    This survey paper is focused on qualitative and numerical analyses of fully nonlinear partial differential equations of parabolic type arising in financial mathematics. The main purpose is to review various non-linear extensions of the classical Black-Scholes theory for pricing financial instruments, as well as models of stochastic dynamic portfolio optimization leading to the Hamilton-Jacobi-Bellman (HJB) equation. After suitable transformations, both problems can be represented by solutions to nonlinear parabolic equations. Qualitative analysis will be focused on issues concerning the existence and uniqueness of solutions. In the numerical part we discuss a stable finite-volume and finite difference schemes for solving fully nonlinear parabolic equations.Comment: arXiv admin note: substantial text overlap with arXiv:1603.0387
    corecore