856 research outputs found

    Advancement Auto-Assessment of Students Knowledge States from Natural Language Input

    Get PDF
    Knowledge Assessment is a key element in adaptive instructional systems and in particular in Intelligent Tutoring Systems because fully adaptive tutoring presupposes accurate assessment. However, this is a challenging research problem as numerous factors affect students’ knowledge state estimation such as the difficulty level of the problem, time spent in solving the problem, etc. In this research work, we tackle this research problem from three perspectives: assessing the prior knowledge of students, assessing the natural language short and long students’ responses, and knowledge tracing.Prior knowledge assessment is an important component of knowledge assessment as it facilitates the adaptation of the instruction from the very beginning, i.e., when the student starts interacting with the (computer) tutor. Grouping students into groups with similar mental models and patterns of prior level of knowledge allows the system to select the right level of scaffolding for each group of students. While not adapting instruction to each individual learner, the advantage of adapting to groups of students based on a limited number of prior knowledge levels has the advantage of decreasing the authoring costs of the tutoring system. To achieve this goal of identifying or clustering students based on their prior knowledge, we have employed effective clustering algorithms. Automatically assessing open-ended student responses is another challenging aspect of knowledge assessment in ITSs. In dialogue-based ITSs, the main interaction between the learner and the system is natural language dialogue in which students freely respond to various system prompts or initiate dialogue moves in mixed-initiative dialogue systems. Assessing freely generated student responses in such contexts is challenging as students can express the same idea in different ways owing to different individual style preferences and varied individual cognitive abilities. To address this challenging task, we have proposed several novel deep learning models as they are capable to capture rich high-level semantic features of text. Knowledge tracing (KT) is an important type of knowledge assessment which consists of tracking students’ mastery of knowledge over time and predicting their future performances. Despite the state-of-the-art results of deep learning in this task, it has many limitations. For instance, most of the proposed methods ignore pertinent information (e.g., Prior knowledge) that can enhance the knowledge tracing capability and performance. Working toward this objective, we have proposed a generic deep learning framework that accounts for the engagement level of students, the difficulty of questions and the semantics of the questions and uses a novel times series model called Temporal Convolutional Network for future performance prediction. The advanced auto-assessment methods presented in this dissertation should enable better ways to estimate learner’s knowledge states and in turn the adaptive scaffolding those systems can provide which in turn should lead to more effective tutoring and better learning gains for students. Furthermore, the proposed method should enable more scalable development and deployment of ITSs across topics and domains for the benefit of all learners of all ages and backgrounds

    Measuring associational thinking through word embeddings

    Full text link
    [EN] The development of a model to quantify semantic similarity and relatedness between words has been the major focus of many studies in various fields, e.g. psychology, linguistics, and natural language processing. Unlike the measures proposed by most previous research, this article is aimed at estimating automatically the strength of associative words that can be semantically related or not. We demonstrate that the performance of the model depends not only on the combination of independently constructed word embeddings (namely, corpus- and network-based embeddings) but also on the way these word vectors interact. The research concludes that the weighted average of the cosine-similarity coefficients derived from independent word embeddings in a double vector space tends to yield high correlations with human judgements. Moreover, we demonstrate that evaluating word associations through a measure that relies on not only the rank ordering of word pairs but also the strength of associations can reveal some findings that go unnoticed by traditional measures such as Spearman's and Pearson's correlation coefficients.s Financial support for this research has been provided by the Spanish Ministry of Science, Innovation and Universities [grant number RTC 2017-6389-5], the Spanish ¿Agencia Estatal de Investigación¿ [grant number PID2020-112827GB-I00 / AEI / 10.13039/501100011033], and the European Union¿s Horizon 2020 research and innovation program [grant number 101017861: project SMARTLAGOON]. Open Access funding provided thanks to the CRUE-CSIC agreement with Springer Nature.Periñán-Pascual, C. (2022). Measuring associational thinking through word embeddings. Artificial Intelligence Review. 55(3):2065-2102. https://doi.org/10.1007/s10462-021-10056-62065210255

    Novel Computational Approaches For Multidimensional Brain Image Analysis

    Get PDF
    The overall goal of this dissertation is focused on addressing challenging problems in 1D, 2D/3D and 4D neuroimaging by developing novel algorithms that combine signal processing and machine learning techniques. One of these challenging tasks is the accurate localization of the eloquent language cortex in brain resection pre-surgery patients. This is especially important since inaccurate localization can lead to diminshed functionalities and thus, a poor quality of life for the patient. The first part of this dissertation addresses this problem in the case of drug-resistant epileptic patients. We propose a novel machine learning based algorithm to establish an alternate electrical stimulation-free approach, electro-corticography (ECoG) as a viable technique for localization of the eloqeunt language cortex. We process the 1D signals in frequency domain to train a classifier and identify language responsive electrodes from the surface of the brain. We then enhance the proposed approach by developing novel multi-modal deep learning algorithms. We test different aspects of the experimental paradigm and identify the best features and models for classification. Another difficult neuroimaging task is that of identifying biomarkers of a disease. This is even more challenging considering that skill acquisition leads to neurological changes. We propose to help understand these changes in the brain of chess masters via a multi-modal approach that combines 3D and 4D imaging modalities in a novel way. The proposed approaches may help narrow the regions to be tested in pre-surgical localization tasks and in better surgery planning. The proposed work may also pave the way for a holistic view of the human brain by combining several modalities into one. Finally, we deal with the problem of learning strong signal representations/features by proposing a novel capsule based variational autoencoder, B-Caps. The proposed B-Caps helps in learning a strong feature representation that can be used with multi-dimensional data

    Semantic radical consistency and character transparency effects in Chinese: an ERP study

    Get PDF
    BACKGROUND: This event-related potential (ERP) study aims to investigate the representation and temporal dynamics of Chinese orthography-to-semantics mappings by simultaneously manipulating character transparency and semantic radical consistency. Character components, referred to as radicals, make up the building blocks used dur...postprin

    False textual information detection, a deep learning approach

    Get PDF
    Many approaches exist for analysing fact checking for fake news identification, which is the focus of this thesis. Current approaches still perform badly on a large scale due to a lack of authority, or insufficient evidence, or in certain cases reliance on a single piece of evidence. To address the lack of evidence and the inability of models to generalise across domains, we propose a style-aware model for detecting false information and improving existing performance. We discovered that our model was effective at detecting false information when we evaluated its generalisation ability using news articles and Twitter corpora. We then propose to improve fact checking performance by incorporating warrants. We developed a highly efficient prediction model based on the results and demonstrated that incorporating is beneficial for fact checking. Due to a lack of external warrant data, we develop a novel model for generating warrants that aid in determining the credibility of a claim. The results indicate that when a pre-trained language model is combined with a multi-agent model, high-quality, diverse warrants are generated that contribute to task performance improvement. To resolve a biased opinion and making rational judgments, we propose a model that can generate multiple perspectives on the claim. Experiments confirm that our Perspectives Generation model allows for the generation of diverse perspectives with a higher degree of quality and diversity than any other baseline model. Additionally, we propose to improve the model's detection capability by generating an explainable alternative factual claim assisting the reader in identifying subtle issues that result in factual errors. The examination demonstrates that it does indeed increase the veracity of the claim. Finally, current research has focused on stance detection and fact checking separately, we propose a unified model that integrates both tasks. Classification results demonstrate that our proposed model outperforms state-of-the-art methods

    Interim Project Descriptions 2022

    Get PDF
    • …
    corecore