6,155 research outputs found

    Orthogonal methods based ant colony search for solving continuous optimization problems

    Get PDF
    Research into ant colony algorithms for solving continuous optimization problems forms one of the most significant and promising areas in swarm computation. Although traditional ant algorithms are designed for combinatorial optimization, they have shown great potential in solving a wide range of optimization problems, including continuous optimization. Aimed at solving continuous problems effectively, this paper develops a novel ant algorithm termed "continuous orthogonal ant colony" (COAC), whose pheromone deposit mechanisms would enable ants to search for solutions collaboratively and effectively. By using the orthogonal design method, ants in the feasible domain can explore their chosen regions rapidly and e±ciently. By implementing an "adaptive regional radius" method, the proposed algorithm can reduce the probability of being trapped in local optima and therefore enhance the global search capability and accuracy. An elitist strategy is also employed to reserve the most valuable points. The performance of the COAC is compared with two other ant algorithms for continuous optimization of API and CACO by testing seventeen functions in the continuous domain. The results demonstrate that the proposed COAC algorithm outperforms the others

    Use of the q-Gaussian mutation in evolutionary algorithms

    Get PDF
    Copyright @ Springer-Verlag 2010.This paper proposes the use of the q-Gaussian mutation with self-adaptation of the shape of the mutation distribution in evolutionary algorithms. The shape of the q-Gaussian mutation distribution is controlled by a real parameter q. In the proposed method, the real parameter q of the q-Gaussian mutation is encoded in the chromosome of individuals and hence is allowed to evolve during the evolutionary process. In order to test the new mutation operator, evolution strategy and evolutionary programming algorithms with self-adapted q-Gaussian mutation generated from anisotropic and isotropic distributions are presented. The theoretical analysis of the q-Gaussian mutation is also provided. In the experimental study, the q-Gaussian mutation is compared to Gaussian and Cauchy mutations in the optimization of a set of test functions. Experimental results show the efficiency of the proposed method of self-adapting the mutation distribution in evolutionary algorithms.This work was supported in part by FAPESP and CNPq in Brazil and in part by the Engineering and Physical Sciences Research Council (EPSRC) of the UK under Grant EP/E060722/1 and Grant EP/E060722/2

    Operations research investigations of satellite power stations

    Get PDF
    A systems model reflecting the design concepts of Satellite Power Stations (SPS) was developed. The model is of sufficient scope to include the interrelationships of the following major design parameters: the transportation to and between orbits; assembly of the SPS; and maintenance of the SPS. The systems model is composed of a set of equations that are nonlinear with respect to the system parameters and decision variables. The model determines a figure of merit from which alternative concepts concerning transportation, assembly, and maintenance of satellite power stations are studied. A hybrid optimization model was developed to optimize the system's decision variables. The optimization model consists of a random search procedure and the optimal-steepest descent method. A FORTRAN computer program was developed to enable the user to optimize nonlinear functions using the model. Specifically, the computer program was used to optimize Satellite Power Station system components
    corecore