24 research outputs found

    Bounds and Simulation Results of 32-ary and 64-ary Quadrature Amplitude Modulation for Broadband-ISDN via Satellite

    Get PDF
    Union bounds and Monte Carlo simulation Bit-Error-Rate (BER) performance results are presented for various 32-ary and 64-ary Quadrature Amplitude Modulation (QAM) schemes. Filtered and unfiltered modulation formats are compared for the best packing arrangement in peak power limited systems. It is verified that circular constellations which populate as many symbols as possible at the peak magnitude offer the best performance. For example: a 32-ary QAM scheme based on concentric circles offers about 1.05 dB better peak power improvement at a BER of 10(exp -6) over the scheme optimized for average power using triangular symbol packing. This peak power improvement increases to 1.25 dB for comparable 64-ary QAM schemes. This work serves as a precursor to determine the feasibility of a combined modem/codec that can accommodate Broadband Integrated Services Digital Network (B-ISDN) at a rate of 155.52 Mbps through typical transponder bandwidths of 36 MHz and 54 MHz

    Experimental demonstration of 72% reach enhancement of 3.6Tbps optical transmission system using mid-link Optical Phase Conjugation

    Get PDF
    We experimentally demonstrate nonlinear noise compensation in optical phase conjugation assisted 1st order Raman amplified 30x30Gbaud DP-QPSK transmission system with a spectral efficiency of 3.6b/s/Hz. We show that by optimizing the link symmetry, even with only 1st order Raman amplification a single, mid-link, optical phase conjugation compensates for 90% off the signal-signal nonlinear interference resulting in a 2.3dB performance enhancement. We show that increasing the number of optical phase conjugation s in the presence of 10% residual nonlinearity results in a reduction in the performance enhancement owing to an enhancement in the nonlinear noise generation efficiency of the system. We achieve a record 72% optical phase conjugation enabled reach enhancement of the 30x30Gbaud DP-QPSK signals

    Lumped silicon photonic Mach-Zehnder modulators for high-speed optical interconnects

    Get PDF
    The boom in worldwide internet connectivity and cloud services has caused unprecedented need for high-bandwidth connections between and within data centres. Silicon photonics is becoming the platform of choice to provide low-cost, large-volume production of future optical transceivers. However, the scale of modern data centres introduces challenges of speed, reach and, crucially, energy consumption for these devices. Silicon photonic Mach-Zehnder modulators (MZMs) are one possibility for providing electrical-to-optical conversion at the transmit side of such fibre-optic links. In this thesis, comprehensive investigation is carried out into lumped MZMs, specifically, as their unterminated, capacitive load holds promise for lower power consumption than more typical travelling-wave MZMs with resistive terminations. Detailed characterisations and simulations of dual-drive silicon photonic lumped MZMs are made to investigate the key trade-off of modulation bandwidth and drive voltage. Drivers with low source impedance are investigated as a means of boosting lumped MZM bandwidths, while advanced modulation formats such as four-level pulse-amplitude modulation (PAM4) and electrical duobinary modulation (EDB) are also leveraged to provide more spectrally-efficient signals. In particular, experimental demonstration is made of a novel low-impedance, switched-capacitor PAM4 driver for a lumped MZM in a 30 Gb/s silicon photonic link over 10 km of optical fibre. Simulations are carried out to optimise the bias and doping levels of lumped MZMs used with such drivers. Predistortion methods are investigated through experiments and simulations as alternative ways to increase the bandwidth. A simple first-order FIR filter is shown experimentally to enable 25 Gb/s NRZ modulation with a low-bandwidth MZM, while more optimised precompensation enables 50 Gb/s PAM4 and EDB. Finally, simulations using an accurate equivalent circuit model for the lumped MZM demonstrate the potential for a well-designed driver with lowered source impedance and controlled amounts of inductive peaking to reduce the need for transmitter-side precompensation

    Simplified DSP-Based Signal-Signal Beat Interference Mitigation Technique for Direct Detection OFDM

    Get PDF
    Short- and medium-haul links in interdata center, access, and metro networks require cost-effective direct-detection wavelength-division multiplexing transceivers offering energy efficiency, high information spectral density (ISD), and dispersion tolerance. Single-sideband orthogonal frequency-division multiplexing (SSB-OFDM) with direct detection is a potential solution; however, it suffers a penalty from signal-signal beat interference (SSBI) caused by the square-law photodetection. In this paper, a novel DSP-based SSBI mitigation technique, with lower complexity than previously proposed methods, is proposed and assessed through numerical simulations for the first time. The performance improvement is quantified by simulations of 9 × 112 Gb/s 16-QAM SSB-OFDM signal with a net optical ISD of 2.1 (b/s)/Hz. The performance is shown to be similar to that of the more complex receiver-based iterative SSBI compensation technique. Simulations predict an 8.7 dB reduction in the required OSNR at the 7% overhead HD-FEC threshold, and increases up to 100% in maximum reach over uncompensated standard single-mode fibre using the proposed simplified SSBI compensation technique

    Anwendung von maschinellem Lernen in der optischen Nachrichtenübertragungstechnik

    Get PDF
    Aufgrund des zunehmenden Datenverkehrs wird erwartet, dass die optischen Netze zukünftig mit höheren Systemkapazitäten betrieben werden. Dazu wird bspw. die kohärente Übertragung eingesetzt, bei der das Modulationsformat erhöht werden kann, erforder jedoch ein größeres SNR. Um dies zu erreichen, wird die optische Signalleistung erhöht, wodurch die Datenübertragung durch die nichtlinearen Beeinträchtigungen gestört wird. Der Schwerpunkt dieser Arbeit liegt auf der Entwicklung von Modellen des maschinellen Lernens, die auf diese nichtlineare Signalverschlechterung reagieren. Es wird die Support-Vector-Machine (SVM) implementiert und als klassifizierende Entscheidungsmaschine verwendet. Die Ergebnisse zeigen, dass die SVM eine verbesserte Kompensation sowohl der nichtlinearen Fasereffekte als auch der Verzerrungen der optischen Systemkomponenten ermöglicht. Das Prinzip von EONs bietet eine Technologie zur effizienten Nutzung der verfügbaren Ressourcen, die von der optischen Faser bereitgestellt werden. Ein Schlüsselelement der Technologie ist der bandbreitenvariable Transponder, der bspw. die Anpassung des Modulationsformats oder des Codierungsschemas an die aktuellen Verbindungsbedingungen ermöglicht. Um eine optimale Ressourcenauslastung zu gewährleisten wird der Einsatz von Algorithmen des Reinforcement Learnings untersucht. Die Ergebnisse zeigen, dass der RL-Algorithmus in der Lage ist, sich an unbekannte Link-Bedingungen anzupassen, während vergleichbare heuristische Ansätze wie der genetische Algorithmus für jedes Szenario neu trainiert werden müssen

    Digital signal processing for coherent optical fibre communications

    Get PDF
    In this thesis investigations were performed into digital signal processing (DSP) algorithms for coherent optical fibre transmission systems, which provide improved performance with respect to conventional systems and algorithms. Firstly, an overview of coherent detection and coherent transmission systems is given. Experimental investigations were then performed into the performance of digital backpropagation for mitigating fibre nonlinearities in a dual-polarization quadrature phase shift keying (DP-QPSK) system over 7780 km and a dual-polarization 16- level quadrature amplitude modulation (DP-QAM16) system over 1600 km. It is noted that significant improvements in performance may be achieved for a nonlinear step-size greater than one span. An approximately exponential relationship was found between performance improvement in Q-factor and the number for required complex multipliers. DSP algorithms for polarization-switched quadrature phase shift keying (PS-QPSK) are then investigated. A novel two-part equalisation algorithm is proposed which provides singularity-free convergence and blind equalisation of PS-QPSK. This algorithm is characterised and its application to wavelength division multiplexed (WDM) transmission systems is discussed. The thesis concludes with an experimental comparison between a PS-QPSK transmission system and a conventional DP-QPSK system. For a 42.9 Gb/s WDM system, the use of PS-QPSK enabled an increase of reach of more than 30%. The resultant reach of 13,640 km was, at the time of publication, the longest transmission distance reported for 40 Gb/s transmission over an uncompensated link with standard fibre and optical amplification

    DSP Based Transmitter I/Q Imbalance Calibration: Implementation and Performance Measurements

    Get PDF
    The recent interest in I/Q signal processing based transceivers has resulted in a new domain of research in flexible, low-power, and low-cost radio architectures. The main advantage of complex or I/Q up- and downconversion is that it does not produce any image signal and eliminates the need of expensive RF filters. This greatly simplifies the transceiver front-end and permits single-chip radio transceiver solutions. The analog quadrature modulators and demodulators are, however, sensitive to two kinds of implementation impairments: gain imbalance, and phase imbalance. These impairments originate due to the non-ideal behavior of the electronic components in the I- and Q- channels of the modulators/demodulators. As a result, they compromise the infinite image signal attenuation and adversely affect the performance of a wireless system. Furthermore, new higher order modulated waveforms and wideband signals are especially susceptible to these impairments and achieving sufficient image signal attenuation is a fundamental requirement for future wireless systems. Therefore, digital techniques which enhance the dynamic range of front-end with minimum amount of additional analog hardware are becoming more popular, being also motivated by the constantly increasing number crunching power of digital circuitry. In this thesis, some recently developed algorithms for I/Q imbalance estimation and compensation are studied on the transmitter side. The calibration algorithms use a baseband test signal combined with a feedback loop from I/Q modulator output back to transmitter digital parts to efficiently estimate the modulator I/Q mismatch. In the feedback loop, the RF signal is demodulated and compared with the original test signal to estimate the I/Q imbalance and the needed pre-distortion parameters. The actual digital transmit signal is then properly pre-distorted with the obtained I/Q imbalance knowledge, in order to cancel the effects of modulator I/Q imbalance at the data transmission phase. The performance of the compensation algorithms is first evaluated with computer simulations. A prototype system using laboratory instruments is also developed to illustrate the effects of I/Q imbalance in direct conversion and low-IF transmitters and is used to prove the usability of algorithms in real life front-ends. The results of computer simulations and laboratory measurements prove that the compensation algorithms yield a good calibration performance by suppressing the image signal interference close to or even below the noise floor. /Kir1

    Compensation of fibre impairments in coherent optical systems

    Get PDF
    Tese de mestrado integrado. Engenharia Electrotécnica e de Computadores. Faculdade de Engenharia. Universidade do Porto. 201
    corecore