172 research outputs found

    Internet of Things Applications as Energy Internet in Smart Grids and Smart Environments

    Get PDF
    Energy Internet (EI) has been recently introduced as a new concept, which aims to evolve smart grids by integrating several energy forms into an extremely flexible and effective grid. In this paper, we have comprehensively analyzed Internet of Things (IoT) applications enabled for smart grids and smart environments, such as smart cities, smart homes, smart metering, and energy management infrastructures to investigate the development of the EI based IoT applications. These applications are promising key areas of the EI concept, since the IoT is considered one of the most important driving factors of the EI. Moreover, we discussed the challenges, open issues, and future research opportunities for the EI concept based on IoT applications and addressed some important research areas

    Advanced Communication and Control Methods for Future Smartgrids

    Get PDF
    Proliferation of distributed generation and the increased ability to monitor different parts of the electrical grid offer unprecedented opportunities for consumers and grid operators. Energy can be generated near the consumption points, which decreases transmission burdens and novel control schemes can be utilized to operate the grid closer to its limits. In other words, the same infrastructure can be used at higher capacities thanks to increased efficiency. Also, new players are integrated into this grid such as smart meters with local control capabilities, electric vehicles that can act as mobile storage devices, and smart inverters that can provide auxiliary support. To achieve stable and safe operation, it is necessary to observe and coordinate all of these components in the smartgrid

    Smart parking management system using SSGA MQTT and real-time database

    Get PDF
    Smart parking system as a part of smart city development has been widely proposed with several research. In this research, proposed a system of parking management application that functions to monitor and control the location of parking slot that can be used by the parking management and parking users. The web application connected to ultrasonic sensor and GPS using MQTT protocol and real-time database. The research used modify algorithm of the SSGA, to optimize the allocation of empty parking slot and MQTT protocol to obtain the faster response time of the system when many users are accessing the website application. The results obtain a variation of sending delays from the client publish to firebase at 4 seconds. Meanwhile, for the sending delay from the broker to firebase the variation was at 2 seconds for each time of data sending

    The role of communication systems in smart grids: Architectures, technical solutions and research challenges

    Get PDF
    The purpose of this survey is to present a critical overview of smart grid concepts, with a special focus on the role that communication, networking and middleware technologies will have in the transformation of existing electric power systems into smart grids. First of all we elaborate on the key technological, economical and societal drivers for the development of smart grids. By adopting a data-centric perspective we present a conceptual model of communication systems for smart grids, and we identify functional components, technologies, network topologies and communication services that are needed to support smart grid communications. Then, we introduce the fundamental research challenges in this field including communication reliability and timeliness, QoS support, data management services, and autonomic behaviors. Finally, we discuss the main solutions proposed in the literature for each of them, and we identify possible future research directions

    Security protocols suite for machine-to-machine systems

    Get PDF
    Nowadays, the great diffusion of advanced devices, such as smart-phones, has shown that there is a growing trend to rely on new technologies to generate and/or support progress; the society is clearly ready to trust on next-generation communication systems to face today’s concerns on economic and social fields. The reason for this sociological change is represented by the fact that the technologies have been open to all users, even if the latter do not necessarily have a specific knowledge in this field, and therefore the introduction of new user-friendly applications has now appeared as a business opportunity and a key factor to increase the general cohesion among all citizens. Within the actors of this technological evolution, wireless machine-to-machine (M2M) networks are becoming of great importance. These wireless networks are made up of interconnected low-power devices that are able to provide a great variety of services with little or even no user intervention. Examples of these services can be fleet management, fire detection, utilities consumption (water and energy distribution, etc.) or patients monitoring. However, since any arising technology goes together with its security threats, which have to be faced, further studies are necessary to secure wireless M2M technology. In this context, main threats are those related to attacks to the services availability and to the privacy of both the subscribers’ and the services providers’ data. Taking into account the often limited resources of the M2M devices at the hardware level, ensuring the availability and privacy requirements in the range of M2M applications while minimizing the waste of valuable resources is even more challenging. Based on the above facts, this Ph. D. thesis is aimed at providing efficient security solutions for wireless M2M networks that effectively reduce energy consumption of the network while not affecting the overall security services of the system. With this goal, we first propose a coherent taxonomy of M2M network that allows us to identify which security topics deserve special attention and which entities or specific services are particularly threatened. Second, we define an efficient, secure-data aggregation scheme that is able to increase the network lifetime by optimizing the energy consumption of the devices. Third, we propose a novel physical authenticator or frame checker that minimizes the communication costs in wireless channels and that successfully faces exhaustion attacks. Fourth, we study specific aspects of typical key management schemes to provide a novel protocol which ensures the distribution of secret keys for all the cryptographic methods used in this system. Fifth, we describe the collaboration with the WAVE2M community in order to define a proper frame format actually able to support the necessary security services, including the ones that we have already proposed; WAVE2M was funded to promote the global use of an emerging wireless communication technology for ultra-low and long-range services. And finally sixth, we provide with an accurate analysis of privacy solutions that actually fit M2M-networks services’ requirements. All the analyses along this thesis are corroborated by simulations that confirm significant improvements in terms of efficiency while supporting the necessary security requirements for M2M networks

    Optimal Home Energy Management System for Committed Power Exchange Considering Renewable Generations

    Get PDF
    This thesis addresses the complexity of SH operation and local renewable resources optimum sizing. The effect of different criteria and components of SH on the size of renewable resources and cost of electricity is investigated. Operation of SH with the optimum size of renewable resources is evaluated to study SH annual cost. The effectiveness of SH with committed exchange power functionality is studied for minimizing cost while responding to DR programs

    Insights from the Inventory of Smart Grid Projects in Europe: 2012 Update

    Get PDF
    By the end of 2010 the Joint Research Centre, the European Commission’s in-house science service, launched the first comprehensive inventory of smart grid projects in Europe1. The final catalogue was published in July 2011 and included 219 smart grid and smart metering projects from the EU-28 member states, Switzerland and Norway. The participation of the project coordinators and the reception of the report by the smart grid community were extremely positive. Due to its success, the European Commission decided that the project inventory would be carried out on a regular basis so as to constantly update the picture of smart grid developments in Europe and keep track of lessons learnt and of challenges and opportunities. For this, a new on-line questionnaire was launched in March 2012 and information on projects collected up to September 2012. At the same time an extensive search of project information on the internet and through cooperation links with other European research organizations was conducted. The resulting final database is the most up to date and comprehensive inventory of smart grids and smart metering projects in Europe, including a total of 281 smart grid projects and 90 smart metering pilot projects and rollouts from the same 30 countries that were included in the 2011 inventory database. Projects surveyed were classified into three categories: R&D, demonstration or pre-deployment) and deployment, and for the first time a distinction between smart grid and smart metering projects was made. The following is an insight into the 2012 report.JRC.F.3-Energy securit

    Flexibility market for congestion management in smart grids

    Get PDF
    Mención Internacional en el título de doctorCurrent power systems are facing several sustainability challenges to meet the increasing demand of electricity. In addition, there is a global direction to increase the share of renewable energy sources in the power generation mix and energy efficiency. In the face of all such challenges, smart grids were incepted. Smart grids are modernized power systems that integrate state-of-the art communication and information technology to facilitate the bidirectional flow of information and electricity between the supply and demand sides. The resilience of smart grids can pave the way for having more flexibility at the distribution level of the power systems. Demand response (DR) programs are considered one of the sources of system flexibility and it is one of the main components of smart grids. DR can be defined as the willingness of customers to alter their electricity consumption profile in response to price signals. Transmission system operators have been implementing demand response programs in a straightforward fashion for several years now. For example, by having energy prices that are expensive during on-peak periods and low-priced at off-peak periods. Other type of DR programs introduces price signals when grid reliability is compromised and a reduction in energy consumption is necessary. In this way, customers can plan their activities accordingly in order to save money. Now, a new era of technology, artificial intelligence and the so-called “internet of things”, have provided new ways to explore the full potential of demand response, by allowing to alter loads in a much more dynamic and precise manner, thus optimizing the operation of grid assets. This thesis focuses on one of the main types of DR programs which is demand flexibility. Demand flexibility is the ability of the demand-side customers to adjust their load profiles in response to an external market signal. On the short- and medium-term periods, distribution system operators (DSOs) can take advantage of the flexibility of demand to mitigate network congestions caused by increased peaks or high penetration of renewable energy. On the long-term period, DSOs can include demand flexibility in their network expansion planning process for future demand growth. The optimal usage of demand flexibility can help in postponing needed investments for upgrading the networks’ capacity. Demand flexibility can be acquired through market-based solutions which can deliver cost-efficient flexibility services for several market agents by facilitating competition between different flexibility providers. Market mechanisms are considered by policy makers as the optimal solution for flexibility access. With respect to that, this thesis proposes a comprehensive framework for a distribution-level flexibility market, called “Flex-DLM” that enables and facilitates the trading of demand flexibility between the distribution system operator, as the main buyer, and aggregators, as sellers representing flexible consumers. Two types of demand flexibility services were modelled, which are: 1- Up-regulation flexibility (UREG), which corresponds to load decrease volumes, and 2- Down-regulation flexibility (DREG), which corresponds load increase volumes. In addition, the payback effect, which is a common event to the activation of demand flexibility, is considered for both types of flexibility services. Also, the distribution network constraints were modelled, which represents the power flow constraints of the network, which is key to present a realistic model for the flexibility market. In the Flex-DLM, the DSO is considered as the market operator who is responsible of clearing the market, while making sure the network congestions are mitigated. The Flex-DLM operates on two timeframes which are day-ahead and real-time with an objective to provide the DSO with flexibility products that can help it in the congestion management process. In addition to this, the uncertainty of demand is taken into consideration to prevent the DSO from procuring inaccurate amounts of demand flexibility. A new option is introduced in the day-ahead Flex-DLM, called the right-to-use (RtU) that allows the DSO to reserve the right to activate demand flexibility during the day-ahead period for congestions that have low probability of occurrence on the following operation day. In this way, the DSO can call upon this option in real-time if the congestion takes place. Also, the uncertainty behind the customers’ commitment to the flexibility activation requests and amounts is taken into consideration. In this thesis, the decision-making process of the DSO for optimizing its choice of demand flexibility and minimizing its total cost is modelled. Two methods were carried out for the optimization model proposed in this work. The first method follows a deterministic approach, where the objective is to optimize the DSO’s cost and clear the Flex-DLM during the day-ahead period only, without taking into account the uncertainty of demand and the uncertainty of consumers’ participation. The second method follows probabilistic approach, which considers the demand uncertainty during the day-ahead and real-time periods and models the uncertainty behind the customers’ commitment. Both optimization methods were integrated with an optimal power flow (OPF) solver tool in order to check the technical validity of the activated flexibility services and to make sure that the payback effect does not cause further congestions in the network. The advantage of the proposed framework is that it requires minimum regulatory changes and it does not involve the DSO in any electricity trading. Also, the proposed optimization method can be integrated with any OPF solver tool. Different distribution feeders obtained from a distribution network located in Spain were used to check the validity of the proposed framework and the decision-making process. The case studies are divided into two parts: 1- The first part applies the proposed flexibility framework from a deterministic perspective and 2- The second part applies the Flex-DLM framework considering all uncertainties, which corresponds to the probabilistic optimization approach. Finally, to help the DSO in the long-term planning process of its local network, a cost & benefit analysis is carried out to value the economic impact of implementing demand flexibility programs as an alternate solution to conventional network upgradesLos sistemas de energía actuales se enfrentan a varios desafíos de sostenibilidad para satisfacer la creciente demanda de electricidad. Además, existe una clara tendencia a aumentar la proporción de fuentes renovables de energía en la generación de energía y así como hacia la eficiencia energética. Como parte de la respuesta a estos desafíos, se iniciaron las redes inteligentes. Las redes inteligentes son sistemas de energía modernizados que integran tecnología de comunicación e información de última generación para facilitar el flujo bidireccional de información y electricidad entre la oferta y la demanda. La utilización de las redes inteligentes pretende facilitar el empleo de la flexibilidad en la red de distribución de los sistemas eléctricos. Los programas de gestión de la demanda se consideran una de las fuentes de flexibilidad del sistema y es uno de los puntos sobre los que se apoyan las redes inteligentes. La gestión de la demanda se puede definir como la disposición de los clientes a alterar su perfil de consumo de electricidad en respuesta a las señales de precios. Los operadores de sistemas de transporte han estado implementando programas de respuesta a la demanda de manera directa desde hace varios años. Por ejemplo, la diferencia entre precios altos y bajos en el mercado mayorista introduce un incentivo para el consumo en horas de menor precio. Otro tipo de programas de gestión de la demanda introduce señales de precios cuando la fiabilidad de la red se ve comprometida y es necesaria una reducción en el consumo de energía. De esta manera, los consumidores pueden planificar sus actividades en consecuencia para ahorrar costes. Ahora, una nueva era de la tecnología, la inteligencia artificial y el llamado "internet de las cosas" han proporcionado nuevas formas de explorar el potencial completo de la respuesta de la demanda, al permitir alterar las cargas de una manera mucho más dinámica y precisa, optimizando así la utilización de los activos de red. Esta tesis se centra en uno de los principales tipos de programas de DR que es la flexibilidad de la demanda. La flexibilidad de la demanda es la capacidad de los clientes del lado de la demanda para ajustar sus perfiles de carga en respuesta a una señal del mercado externo. En los períodos a corto y mediano plazo, los operadores de sistemas de distribución pueden aprovechar la flexibilidad de la demanda para mitigar las congestiones en la red causadas por el aumento de los picos de demanda o la alta penetración de energía renovable. En el período a largo plazo, los distribuidores pueden incluir la flexibilidad de la demanda en su proceso de planificación de expansión de la red para el crecimiento futuro de la demanda. El uso óptimo de la flexibilidad de la demanda puede ayudar a posponer las inversiones necesarias para mejorar la capacidad de las redes. La flexibilidad de la demanda se puede conseguir mediante soluciones basadas en el mercado que pueden ofrecer servicios de flexibilidad rentables para varios agentes del mercado al facilitar la competencia entre diferentes proveedores de flexibilidad. Los reguladores suelen considerar que son los mecanismos de mercado los que dan la solución óptima para la gestión de la flexibilidad. En relación con estos temas, esta tesis propone un marco integral para un mercado de flexibilidad a en la red de distribución, denominado “Flex-DLM” que permite y facilita el comercio de flexibilidad de demanda entre el operador del sistema de distribución, como el principal comprador, y los agregadores, como vendedores que representan a los consumidores flexibles. Se han modelado dos tipos de servicios de flexibilidad de demanda, que son: 1- Flexibilidad a subir (UREG), que corresponde a un requerimiento disminución de carga, y 2- Flexibilidad a bajar (DREG), que corresponde a un requerimiento de aumento de carga. Además, el efecto de rebote, o consumo posterior al uso de la flexibilidad, que es un fenómeno común tras la activación de la flexibilidad de la demanda, se tiene en cuenta para ambos tipos de servicios de flexibilidad. Además, se han modelado las restricciones de la red de distribución, que representan las restricciones de flujo de potencia de la red, que es clave para presentar un modelo realista para el mercado de flexibilidad. En el mercado Flex-DLM propuesto, se considera al distribuidor como el operador responsable de despejar el mercado, al tiempo que se encarga de mitigar las congestiones de la red. El Flex-DLM opera en dos marcos de tiempo: el diario y el tiempo real con el objetivo de proporcionar al distribuidor productos flexibles que puedan ayudarlo en el proceso de gestión de la congestión. Además de esto, la incertidumbre de la demanda se tiene en cuenta para evitar que el distribuidor adquiera cantidades incorrectas de flexibilidad de la demanda. Se introduce una nueva opción en el Flex-DLM del día siguiente, denominado derecho de uso que le permite al distribuidor reservar el derecho de activar la flexibilidad de la demanda durante el período del día anterior para congestiones que tienen poca probabilidad de ocurrencia en el siguiente día de operación. De esta manera, el distribuidor puede recurrir a esta opción en tiempo real si se produce la congestión. Además, se tiene en cuenta la incertidumbre sobre del compromiso de cumplimiento de los clientes con los requerimientos y las cantidades de energía activadas durante el proceso de gestión de la flexibilidad. En esta tesis, se modela asimismo el proceso de toma de decisiones del DSO para optimizar su elección de flexibilidad de demanda y minimizar su costo total. Se llevaron a cabo dos métodos para el modelo de optimización propuesto en este trabajo. El primer método sigue un enfoque determinista, donde el objetivo es optimizar el coste de la flexibilidad para el distribuidor y eliminar el Flex-DLM solo durante el mercado diario , sin tener en cuenta la incertidumbre de la demanda y la de la participación de los consumidores. El segundo método sigue un enfoque probabilístico, que considera la incertidumbre de la demanda durante los períodos diarios y en tiempo real y modela la incertidumbre del compromiso de los clientes. Ambos métodos de optimización se integraron con una herramienta de solución de flujo de potencia óptimo (OPF) para verificar la validez técnica de los servicios de flexibilidad activados y asegurar que el efecto de recuperación no cause más congestiones en la red. La ventaja del marco propuesto es que requiere cambios regulatorios mínimos y no involucra al DSO en ningún comercio de electricidad. Además, el método de optimización propuesto se puede integrar con cualquier herramienta de solución OPF. Se han utiliado diferentes líneas de distribución obtenidos de una red de distribución ubicada en España para verificar la validez del marco propuesto y el proceso de toma de decisiones. Los estudios de caso se dividen en dos partes: 1- La primera parte aplica el marco de flexibilidad propuesto desde una perspectiva determinista y 2- La segunda parte aplica el marco Flex-DLM considerando todas las incertidumbres, que corresponden al enfoque de optimización probabilística. Finalmente, para ayudar al distribuidor en el proceso de planificación a largo plazo de su red local, se lleva a cabo un análisis coste - beneficio para valorar el impacto económico de la implementación de programas de flexibilidad de la demanda como una solución alternativa a las actualizaciones de red convencionales.Programa Oficial de Doctorado en Ingeniería Eléctrica, Electrónica y AutomáticaPresidente: Hortensia Elena Amaris Duarte.- Secretario: Milan Prodanovic.- Vocal: Barry Patrick Haye

    Enhancing the efficiency of electricity utilization through home energy management systems within the smart grid framework

    Get PDF
    The concept behind smart grids is the aggregation of “intelligence” into the grid, whether through communication systems technologies that allow broadcast/data reception in real-time, or through monitoring and systems control in an autonomous way. With respect to the technological advancements, in recent years there has been a significant increment in devices and new strategies for the implementation of smart buildings/homes, due to the growing awareness of society in relation to environmental concerns and higher energy costs, so that energy efficiency improvements can provide real gains within modern society. In this perspective, the end-users are seen as active players with the ability to manage their energy resources, for example, microproduction units, domestic loads, electric vehicles and their participation in demand response events. This thesis is focused on identifying application areas where such technologies could bring benefits for their applicability, such as the case of wireless networks, considering the positive and negative points of each protocol available in the market. Moreover, this thesis provides an evaluation of dynamic prices of electricity and peak power, using as an example a system with electric vehicles and energy storage, supported by mixed-integer linear programming, within residential energy management. This thesis will also develop a power measuring prototype designed to process and determine the main electrical measurements and quantify the electrical load connected to a low voltage alternating current system. Finally, two cases studies are proposed regarding the application of model predictive control and thermal regulation for domestic applications with cooling requirements, allowing to minimize energy consumption, considering the restrictions of demand, load and acclimatization in the system

    A rapid review on community connected microgrids

    Get PDF
    As the population of urban areas continues to grow, and construction of multi-unit developments surges in response, building energy use demand has increased accordingly and solutions are needed to offset electricity used from the grid. Renewable energy systems in the form of microgrids, and grid-connected solar PV-storage are considered primary solutions for powering residential developments. The primary objectives for commissioning such systems include significant electricity cost reductions and carbon emissions abatement. Despite the proliferation of renewables, the uptake of solar and battery storage systems in communities and multi-residential buildings are less researched in the literature, and many uncertainties remain in terms of providing an optimal solution. This literature review uses the rapid review technique, an industry and societal issue-based version of the systematic literature review, to identify the case for microgrids for multi-residential buildings and communities. The study describes the rapid review methodology in detail and discusses and examines the configurations and methodologies for microgrids
    corecore