76 research outputs found

    Signal processing techniques for extracting signals with periodic structure : applications to biomedical signals

    Get PDF
    In this dissertation some advanced methods for extracting sources from single and multichannel data are developed and utilized in biomedical applications. It is assumed that the sources of interest have periodic structure and therefore, the periodicity is exploited in various forms. The proposed methods can even be used for the cases where the signals have hidden periodicities, i.e., the periodic behaviour is not detectable from their time representation or even Fourier transform of the signal. For the case of single channel recordings a method based on singular spectrum anal ysis (SSA) of the signal is proposed. The proposed method is utilized in localizing heart sounds in respiratory signals, which is an essential pre-processing step in most of the heart sound cancellation methods. Artificially mixed and real respiratory signals are used for evaluating the method. It is shown that the performance of the proposed method is superior to those of the other methods in terms of false detection. More over, the execution time is significantly lower than that of the method ranked second in performance. For multichannel data, the problem is tackled using two approaches. First, it is assumed that the sources are periodic and the statistical characteristics of periodic sources are exploited in developing a method to effectively choose the appropriate delays in which the diagonalization takes place. In the second approach it is assumed that the sources of interest are cyclostationary. Necessary and sufficient conditions for extractability of the sources are mathematically proved and the extraction algorithms are proposed. Ballistocardiogram (BCG) artifact is considered as the sum of a number of independent cyclostationary components having the same cycle frequency. The proposed method, called cyclostationary source extraction (CSE), is able to extract these components without much destructive effect on the background electroencephalogram (EEG

    Graphical model driven methods in adaptive system identification

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution September 2016Identifying and tracking an unknown linear system from observations of its inputs and outputs is a problem at the heart of many different applications. Due to the complexity and rapid variability of modern systems, there is extensive interest in solving the problem with as little data and computation as possible. This thesis introduces the novel approach of reducing problem dimension by exploiting statistical structure on the input. By modeling the input to the system of interest as a graph-structured random process, it is shown that a large parameter identification problem can be reduced into several smaller pieces, making the overall problem considerably simpler. Algorithms that can leverage this property in order to either improve the performance or reduce the computational complexity of the estimation problem are developed. The first of these, termed the graphical expectation-maximization least squares (GEM-LS) algorithm, can utilize the reduced dimensional problems induced by the structure to improve the accuracy of the system identification problem in the low sample regime over conventional methods for linear learning with limited data, including regularized least squares methods. Next, a relaxation of the GEM-LS algorithm termed the relaxed approximate graph structured least squares (RAGS-LS) algorithm is obtained that exploits structure to perform highly efficient estimation. The RAGS-LS algorithm is then recast into a recursive framework termed the relaxed approximate graph structured recursive least squares (RAGSRLS) algorithm, which can be used to track time-varying linear systems with low complexity while achieving tracking performance comparable to much more computationally intensive methods. The performance of the algorithms developed in the thesis in applications such as channel identification, echo cancellation and adaptive equalization demonstrate that the gains admitted by the graph framework are realizable in practice. The methods have wide applicability, and in particular show promise as the estimation and adaptation algorithms for a new breed of fast, accurate underwater acoustic modems. The contributions of the thesis illustrate the power of graphical model structure in simplifying difficult learning problems, even when the target system is not directly structured.The work in this thesis was supported primarily by the Office of Naval Research through an ONR Special Research Award in Ocean Acoustics; and at various times by the National Science Foundation, the WHOI Academic Programs Office and the MIT Presidential Fellowship Program

    An audio processing pipeline for acquiring diagnostic quality heart sounds via mobile phone

    Get PDF
    Recently, heart sound signals captured using mobile phones have been employed to develop data-driven heart disease detection systems. Such signals are generally captured in person by trained clinicians who can determine if the recorded heart sounds are of diagnosable quality. However, mobile phones have the potential to support heart health diagnostics, even where access to trained medical professionals is limited. To adopt mobile phones as self-diagnostic tools for the masses, we would need to have a mechanism to automatically establish that heart sounds recorded by non-expert users in uncontrolled conditions have the required quality for diagnostic purposes. This paper proposes a quality assessment and enhancement pipeline for heart sounds captured using mobile phones. The pipeline analyzes a heart sound and determines if it has the required quality for diagnostic tasks. Also, in cases where the quality of the captured signal is below the required threshold, the pipeline can improve the quality by applying quality enhancement algorithms. Using this pipeline, we can also provide feedback to users regarding the cause of low-quality signal capture and guide them towards a successful one. We conducted a survey of a group of thirteen clinicians with auscultation skills and experience. The results of this survey were used to inform and validate the proposed quality assessment and enhancement pipeline. We observed a high level of agreement between the survey results and fundamental design decisions within the proposed pipeline. Also, the results indicate that the proposed pipeline can reduce our dependency on trained clinicians for capture of diagnosable heart sounds

    A Unified Multi-Functional Dynamic Spectrum Access Framework: Tutorial, Theory and Multi-GHz Wideband Testbed

    Get PDF
    Dynamic spectrum access is a must-have ingredient for future sensors that are ideally cognitive. The goal of this paper is a tutorial treatment of wideband cognitive radio and radar—a convergence of (1) algorithms survey, (2) hardware platforms survey, (3) challenges for multi-function (radar/communications) multi-GHz front end, (4) compressed sensing for multi-GHz waveforms—revolutionary A/D, (5) machine learning for cognitive radio/radar, (6) quickest detection, and (7) overlay/underlay cognitive radio waveforms. One focus of this paper is to address the multi-GHz front end, which is the challenge for the next-generation cognitive sensors. The unifying theme of this paper is to spell out the convergence for cognitive radio, radar, and anti-jamming. Moore’s law drives the system functions into digital parts. From a system viewpoint, this paper gives the first comprehensive treatment for the functions and the challenges of this multi-function (wideband) system. This paper brings together the inter-disciplinary knowledge

    Optimal Space-Time-Frequency Design of Microphone Networks

    Get PDF
    Consider a sensing system using a large number of N microphones placed in multiple dimensions to monitor a acoustic field. Using all the microphones at once is impractical because of the amount data generated. Instead, we choose a subset of D microphones to be active. Specifically, we wish to find the D set of microphones that minimizes the largest interference gain at multiple frequencies while monitoring a target of interest. A direct, combinatorial approach - testing all N choose D subsets of microphones - is impractical because of problem size. Instead, we use a convex optimization technique that induces sparsity through a l1-penalty to determine which subset of microphones to use. Our work investigates not only the optimal placement (space) of microphones but also how to process the output of each microphone (time/frequency). We explore this problem for both single and multi-frequency sources, optimizing both microphone weights and positions simultaneously. In addition, we explore this problem for random sources where the output of each of the N microphones is processed by an individual multirate filterbank. The N processed filterbank outputs are then combined to form one final signal. In this case, we fix all the analysis filters and optimize over all the synthesis filters. We show how to convert the continuous frequency problem to a discrete frequency approximation that is computationally tractable. In this random source/multirate filterbank case, we once again optimize over space-time-frequency simultaneously

    Vibration Monitoring: Gearbox identification and faults detection

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    A fault diagnosis methodology for rolling element bearings based on advanced signal pretreatment and autoregressive modelling

    Get PDF
    This study proposes a methodology for rolling element bearings fault diagnosis which gives a complete and highly accurate identification of the faults present. It has two main stages: signals pretreatment, which is based on several signal analysis procedures, and diagnosis, which uses a pattern-recognition process. The first stage is principally based on linear time invariant autoregressive modelling. One of the main contributions of this investigation is the development of a pretreatment signal analysis procedure which subjects the signal to noise cleaning by singular spectrum analysis and then stationarisation by differencing. So the signal is transformed to bring it close to a stationary one, rather than complicating the model to bring it closer to the signal. This type of pre-treatment allows the use of a linear time invariant auto-regressive model and improves its performance when the original signals are non-stationary. This contribution is at the heart of the proposed method, and the high accuracy of the diagnosis is a result of this procedure. The methodology emphasizes the importance of preliminary noise cleaning and stationarisation. And it demonstrates that the information needed for fault identification is contained in the stationary part of the measured signal. The methodology is further validated using three different experimental setups, demonstrating very high accuracy for all of the applications. It is able to correctly classify nearly 100 percent of the faults with regard to their type and size. This high accuracy is the other important contribution of this methodology. Thus, this research suggests a highly accurate methodology for rolling element bearing fault diagnosis which is based on relatively simple procedures. This is also an advantage, as the simplicity of the individual processes ensures easy application and the possibility for automation of the entire process

    Enhanced Spectrum Sensing Techniques for Cognitive Radio Systems

    Get PDF
    Due to the rapid growth of new wireless communication services and applications, much attention has been directed to frequency spectrum resources. Considering the limited radio spectrum, supporting the demand for higher capacity and higher data rates is a challenging task that requires innovative technologies capable of providing new ways of exploiting the available radio spectrum. Cognitive radio (CR), which is among the core prominent technologies for the next generation of wireless communication systems, has received increasing attention and is considered a promising solution to the spectral crowding problem by introducing the notion of opportunistic spectrum usage. Spectrum sensing, which enables CRs to identify spectral holes, is a critical component in CR technology. Furthermore, improving the efficiency of the radio spectrum use through spectrum sensing and dynamic spectrum access (DSA) is one of the emerging trends. In this thesis, we focus on enhanced spectrum sensing techniques that provide performance gains with reduced computational complexity for realistic waveforms considering radio frequency (RF) impairments, such as noise uncertainty and power amplifier (PA) non-linearities. The first area of study is efficient energy detection (ED) methods for spectrum sensing under non-flat spectral characteristics, which deals with relatively simple methods for improving the detection performance. In realistic communication scenarios, the spectrum of the primary user (PU) is non-flat due to non-ideal frequency responses of the devices and frequency selective channel conditions. Weighting process with fast Fourier transform (FFT) and analysis filter bank (AFB) based multi-band sensing techniques are proposed for overcoming the challenge of non-flat characteristics. Furthermore, a sliding window based spectrum sensing approach is addressed to detect a re-appearing PU that is absent in one time and present in other time. Finally, the area under the receiver operating characteristics curve (AUC) is considered as a single-parameter performance metric and is derived for all the considered scenarios. The second area of study is reduced complexity energy and eigenvalue based spectrum sensing techniques utilizing frequency selectivity. More specifically, novel spectrum sensing techniques, which have relatively low computational complexity and are capable of providing accurate and robust performance in low signal-to-noise ratio (SNR) with noise uncertainty, as well as in the presence of frequency selectivity, are proposed. Closed-form expressions are derived for the corresponding probability of false alarm and probability of detection under frequency selectivity due the primary signal spectrum and/or the transmission channel. The offered results indicate that the proposed methods provide quite significant saving in complexity, e.g., 78% reduction in the studied example case, whereas their detection performance is improved both in the low SNR and under noise uncertainty. Finally, a new combined spectrum sensing and resource allocation approach for multicarrier radio systems is proposed. The main contribution of this study is the evaluation of the CR performance when using wideband spectrum sensing methods in combination with water-filling and power interference (PI) based resource allocation algorithms in realistic CR scenarios. Different waveforms, such as cyclic prefix based orthogonal frequency division multiplexing (CP-OFDM), enhanced orthogonal frequency division multiplexing (E-OFDM) and filter bank based multicarrier (FBMC), are considered with PA nonlinearity type RF impairments to see the effects of spectral leakage on the spectrum sensing and resource allocation performance. It is shown that AFB based spectrum sensing techniques and FBMC waveforms with excellent spectral containment properties have clearly better performance compared to the traditional FFT based spectrum sensing techniques with the CP-OFDM. Overall, the investigations in this thesis provide novel spectrum sensing techniques for overcoming the challenge of noise uncertainty with reduced computational complexity. The proposed methods are evaluated under realistic signal models
    corecore