80 research outputs found

    Perceptual models in speech quality assessment and coding

    Get PDF
    The ever-increasing demand for good communications/toll quality speech has created a renewed interest into the perceptual impact of rate compression. Two general areas are investigated in this work, namely speech quality assessment and speech coding. In the field of speech quality assessment, a model is developed which simulates the processing stages of the peripheral auditory system. At the output of the model a "running" auditory spectrum is obtained. This represents the auditory (spectral) equivalent of any acoustic sound such as speech. Auditory spectra from coded speech segments serve as inputs to a second model. This model simulates the information centre in the brain which performs the speech quality assessment. [Continues.

    Biorthogonality in lapped transforms : a study in high-quality audio compression

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1996.Includes bibliographical references (leaves 76-82).by Shiufun Cheung.Ph.D

    Effects of discrete wavelet compression on automated mammographic shape recognition

    Full text link
    At present early detection is critical for the cure of breast cancer. Mammography is a breast screening technique which can detect breast cancer at the earliest possible stage. Mammographic lesions are typically classified into three shape classes, namely round, nodular and stellate. Presently this classification is done by experienced radiologists. In order to increase the speed and decrease the cost of diagnosis, automated recognition systems are being developed. This study analyses an automated classification procedure and its sensitivity to wavelet based image compression; In this study, the mammographic shape images are compressed using discrete wavelet compression and then classified using statistical classification methods. First, one dimensional compression is done on the radial distance measure and the shape features are extracted. Second, linear discriminant analysis is used to compute the weightings of the features. Third, a minimum distance Euclidean classifier and the leave-one-out test method is used for classification. Lastly, a two dimensional compression is performed on the images, and the above process of feature extraction and classification is repeated. The results are compared with those obtained with uncompressed mammographic images
    • …
    corecore