464 research outputs found

    Performance Analysis of SSK-NOMA

    Full text link
    In this paper, we consider the combination between two promising techniques: space-shift keying (SSK) and non-orthogonal multiple access (NOMA) for future radio access networks. We analyze the performance of SSK-NOMA networks and provide a comprehensive analytical framework of SSK-NOMA regarding bit error probability (BEP), ergodic capacity and outage probability. It is worth pointing out all analysis also stand for conventional SIMO-NOMA networks. We derive closed-form exact average BEP (ABEP) expressions when the number of users in a resource block is equal to i.e., L=3L=3. Nevertheless, we analyze the ABEP of users when the number of users is more than i.e., L3L\geq3, and derive bit-error-rate (BER) union bound since the error propagation due to iterative successive interference canceler (SIC) makes the exact analysis intractable. Then, we analyze the achievable rate of users and derive exact ergodic capacity of the users so the ergodic sum rate of the system in closed-forms. Moreover, we provide the average outage probability of the users exactly in the closed-form. All derived expressions are validated via Monte Carlo simulations and it is proved that SSK-NOMA outperforms conventional NOMA networks in terms of all performance metrics (i.e., BER, sum rate, outage). Finally, the effect of the power allocation (PA) on the performance of SSK-NOMA networks is investigated and the optimum PA is discussed under BER and outage constraints

    Collaborative modulation multiple access for single hop and multihop networks

    Get PDF
    While the bandwidth available for wireless networks is limited, the world has seen an unprecedented growth in the number of mobile subscribers and an ever increasing demand for high data rates. Therefore efficient utilisation of bandwidth to maximise link spectral efficiency and number of users that can be served simultaneously are primary goals in the design of wireless systems. To achieve these goals, in this thesis, a new non-orthogonal uplink multiple access scheme which combines the functionalities of adaptive modulation and multiple access called collaborative modulation multiple access (CMMA) is proposed. CMMA enables multiple users to access the network simultaneously and share the same bandwidth even when only a single receive antenna is available and in the presence of high channel correlation. Instead of competing for resources, users in CMMA share resources collaboratively by employing unique modulation sets (UMS) that differ in phase, power, and/or mapping structure. These UMS are designed to insure that the received signal formed from the superposition of all users’ signals belongs to a composite QAM constellation (CC) with a rate equal to the sum rate of all users. The CC and its constituent UMSs are designed centrally at the BS to remove ambiguity, maximize the minimum Euclidian distance (dmin) of the CC and insure a minimum BER performance is maintained. Users collaboratively precode their transmitted signal by performing truncated channel inversion and phase rotation using channel state information (CSI ) obtained from a periodic common pilot to insure that their combined signal at the BS belongs to the CC known at the BS which in turn performs a simple joint maximum likelihood detection without the need for CSI. The coherent addition of users’ power enables CMMA to achieve high link spectral efficiency at any time without extra power or bandwidth but on the expense of graceful degradation in BER performance. To improve the BER performance of CMMA while preserving its precoding and detection structure and without the need for pilot-aided channel estimation, a new selective diversity combining scheme called SC-CMMA is proposed. SC-CMMA optimises the overall group performance providing fairness and diversity gain for various users with different transmit powers and channel conditions by selecting a single antenna out of a group of L available antennas that minimises the total transmit power required for precoding at any one time. A detailed study of capacity and BER performance of CMMA and SC-CMMA is carried out under different level of channel correlations which shows that both offer high capacity gain and resilience to channel correlation. SC-CMMA capacity even increase with high channel correlation between users’ channels. CMMA provides a practical solution for implementing the multiple access adder channel (MAAC) in fading environments hence a hybrid approach combining both collaborative coding and modulation referred to as H-CMMA is investigated. H-CMMA divides users into a number of subgroups where users within a subgroup are assigned the same modulation set and different multiple access codes. H-CMMA adjusts the dmin of the received CC by varying the number of subgroups which in turn varies the number of unique constellation points for the same number of users and average total power. Therefore H-CMMA can accommodate many users with different rates while flexibly managing the complexity, rate and BER performance depending on the SNR. Next a new scheme combining CMMA with opportunistic scheduling using only partial CSI at the receiver called CMMA-OS is proposed to combine both the power gain of CMMA and the multiuser diversity gain that arises from users’ channel independence. To avoid the complexity and excessive feedback associated with the dynamic update of the CC, the BS takes into account the independence of users’ channels in the design of the CC and its constituent UMSs but both remain unchanged thereafter. However UMS are no longer associated with users, instead channel gain’s probability density function is divided into regions with identical probability and each UMS is associated with a specific region. This will simplify scheduling as users can initially chose their UMS based on their CSI and the BS will only need to resolve any collision when the channels of two or more users are located at the same region. Finally a high rate cooperative communication scheme, called cooperative modulation (CM) is proposed for cooperative multiuser systems. CM combines the reliability of the cooperative diversity with the high spectral efficiency and multiple access capabilities of CMMA. CM maintains low feedback and high spectral efficiency by restricting relaying to a single route with the best overall channel. Two possible variations of CM are proposed depending on whether CSI available only at the users or just at the BS and the selected relay. The first is referred to Precode, Amplify, and Forward (PAF) while the second one is called Decode, Remap, and Forward (DMF). A new route selection algorithm for DMF based on maximising dmin of random CC is also proposed using a novel fast low-complexity multi-stage sphere based algorithm to calculate the dmin at the relay of random CC that is used for both relay selection and detection

    Receiver Design and Security for Low Power Wireless Communications Systems

    Get PDF
    This dissertation focuses on two important areas in wireless communications: receiver design and security. In the first part of this dissertation we consider low data rate receiver design for ultra-wideband (UWB), a wideband radio technology that promises to help solve the frequency allocation problem that often inhibits narrowband systems. Reference-based receivers are promising candidates in the UWB regime, because the conventional rake receiver designs suffers from complexity limitations and inaccuracies in channel estimation. Many reference-based systems have arisen as viable solutions for receivers. We unify these systems as well as other systems into the general framework for performance analysis to suggest the optimal system for varying constraints. We improve the performance of frequency-shifted reference (FSR-UWB) for an average power constraint by halving the frequency offset and employing a sample-and-hold approach across the frame period. Also, we introduce a novel peak mitigation technique; tone reservation, for the multi-differential (MD) version of FSR-UWB, to reduce the high peak-to-average power ratio observed as the data carriers increase. The next part of this dissertation is about wireless security which is ubiquitous in modern news. Cryptography is widely use for security but it assumes limited computational abilities of an eavesdropper, is based on the unproven hardness of the underlying primitives, and allows for the message to be recorded and decrypted later. In this dissertation we consider an information-theoretic security approach to guaranteeing everlasting secrecy. We contribute a new secrecy rate pair outage formulation, where an outage event is based on the instantaneous rates of the destination and the eavesdropper being below and above desired thresholds, respectively. In our new secrecy rate pair outage formulation, two new unaccounted outage events emerge: secrecy breach, where the eavesdropper is above the targeted threshold; unreliable, where the destination is unable to successfully decode the message. The former case must be carefully avoided, while for the latter case we can exploit automatic retransmissions (ARQ) while maintaining the eavesdropper intercept probability below the target threshold. We look at both ``simple\u27\u27 receivers and also complex receivers that use a buffer to store previous messages to maximally combine signal-to-noise ratio (SNR). Then we extend these results to the two-hop case where we maximize the end-to-end secure throughput by optimizing the intercept probability at each eavesdropper given a total end-to-end intercept constraint. Lastly, we consider the difficult case in information-theoretic security: the near eavesdropper case, where we contribute an optimal power allocation algorithm that leverages nearby chatter nodes to generate noise to reduce the probability of intercept by the eavesdropper while minimally impeding the source-to-destination communication. As shown in both one-hop and two-hop cases, allowing a slight outage at the destination for cases of when the eavesdropper is above a specific threshold greatly improves secrecy performance
    corecore