23,296 research outputs found

    Transparent and scalable client-side server selection using netlets

    Get PDF
    Replication of web content in the Internet has been found to improve service response time, performance and reliability offered by web services. When working with such distributed server systems, the location of servers with respect to client nodes is found to affect service response time perceived by clients in addition to server load conditions. This is due to the characteristics of the network path segments through which client requests get routed. Hence, a number of researchers have advocated making server selection decisions at the client-side of the network. In this paper, we present a transparent approach for client-side server selection in the Internet using Netlet services. Netlets are autonomous, nomadic mobile software components which persist and roam in the network independently, providing predefined network services. In this application, Netlet based services embedded with intelligence to support server selection are deployed by servers close to potential client communities to setup dynamic service decision points within the network. An anycast address is used to identify available distributed decision points in the network. Each service decision point transparently directs client requests to the best performing server based on its in-built intelligence supported by real-time measurements from probes sent by the Netlet to each server. It is shown that the resulting system provides a client-side server selection solution which is server-customisable, scalable and fault transparent

    Proactive multi-tenant cache management for virtualized ISP networks

    Get PDF
    The content delivery market has mainly been dominated by large Content Delivery Networks (CDNs) such as Akamai and Limelight. However, CDN traffic exerts a lot of pressure on Internet Service Provider (ISP) networks. Recently, ISPs have begun deploying so-called Telco CDNs, which have many advantages, such as reduced ISP network bandwidth utilization and improved Quality of Service (QoS) by bringing content closer to the end-user. Virtualization of storage and networking resources can enable the ISP to simultaneously lease its Telco CDN infrastructure to multiple third parties, opening up new business models and revenue streams. In this paper, we propose a proactive cache management system for ISP-operated multi-tenant Telco CDNs. The associated algorithm optimizes content placement and server selection across tenants and users, based on predicted content popularity and the geographical distribution of requests. Based on a Video-on-Demand (VoD) request trace of a leading European telecom operator, the presented algorithm is shown to reduce bandwidth usage by 17% compared to the traditional Least Recently Used (LRU) caching strategy, both inside the network and on the ingress links, while at the same time offering enhanced load balancing capabilities. Increasing the prediction accuracy is shown to have the potential to further improve bandwidth efficiency by up to 79%

    Practical service placement approach for microservices architecture

    Get PDF
    Community networks (CNs) have gained momentum in the last few years with the increasing number of spontaneously deployed WiFi hotspots and home networks. These networks, owned and managed by volunteers, offer various services to their members and to the public. To reduce the complexity of service deployment, community micro-clouds have recently emerged as a promising enabler for the delivery of cloud services to community users. By putting services closer to consumers, micro-clouds pursue not only a better service performance, but also a low entry barrier for the deployment of mainstream Internet services within the CN. Unfortunately, the provisioning of the services is not so simple. Due to the large and irregular topology, high software and hardware diversity of CNs, it requires of aPeer ReviewedPostprint (author's final draft

    On the effect of combining cooperative communication with sleep mode

    Get PDF
    Cooperation is crucial in (next-generation) wireless networks as it can greatly attribute to ensuring connectivity, reliability, performance, ... Relaying looks promising in a wide variety of network types (cellular, ad-hoc on-demand), each using a certain protocol. Energy efficiency constitutes another key aspect of such networks, as battery power is often limited, and is typically achieved by sleep mode operation. As the range of applications is very broad, rather than modelling one of the protocols in detail, we construct a high-level model capturing the two essential characteristics of cooperation and energy efficiency: relaying and sleep mode, and study their interaction. The used analytical approach allows for accurate performance evaluation and enables us to unveil less trivial trade-offs and to formulate rules-of-thumb applicable across all potential scenarios
    corecore