2,933 research outputs found

    Optimum Power and Rate Allocation for Coded V-BLAST: Average Optimization

    Get PDF
    An analytical framework for performance analysis and optimization of coded V-BLAST is developed. Average power and/or rate allocations to minimize the outage probability as well as their robustness and dual problems are investigated. Compact, closed-form expressions for the optimum allocations and corresponding system performance are given. The uniform power allocation is shown to be near optimum in the low outage regime in combination with the optimum rate allocation. The average rate allocation provides the largest performance improvement (extra diversity gain), and the average power allocation offers a modest SNR gain limited by the number of transmit antennas but does not increase the diversity gain. The dual problems are shown to have the same solutions as the primal ones. All these allocation strategies are shown to be robust. The reported results also apply to coded multiuser detection and channel equalization systems relying on successive interference cancellation

    Error Rates of the Maximum-Likelihood Detector for Arbitrary Constellations: Convex/Concave Behavior and Applications

    Get PDF
    Motivated by a recent surge of interest in convex optimization techniques, convexity/concavity properties of error rates of the maximum likelihood detector operating in the AWGN channel are studied and extended to frequency-flat slow-fading channels. Generic conditions are identified under which the symbol error rate (SER) is convex/concave for arbitrary multi-dimensional constellations. In particular, the SER is convex in SNR for any one- and two-dimensional constellation, and also in higher dimensions at high SNR. Pairwise error probability and bit error rate are shown to be convex at high SNR, for arbitrary constellations and bit mapping. Universal bounds for the SER 1st and 2nd derivatives are obtained, which hold for arbitrary constellations and are tight for some of them. Applications of the results are discussed, which include optimum power allocation in spatial multiplexing systems, optimum power/time sharing to decrease or increase (jamming problem) error rate, an implication for fading channels ("fading is never good in low dimensions") and optimization of a unitary-precoded OFDM system. For example, the error rate bounds of a unitary-precoded OFDM system with QPSK modulation, which reveal the best and worst precoding, are extended to arbitrary constellations, which may also include coding. The reported results also apply to the interference channel under Gaussian approximation, to the bit error rate when it can be expressed or approximated as a non-negative linear combination of individual symbol error rates, and to coded systems.Comment: accepted by IEEE IT Transaction

    High-Rate Space-Time Coded Large MIMO Systems: Low-Complexity Detection and Channel Estimation

    Full text link
    In this paper, we present a low-complexity algorithm for detection in high-rate, non-orthogonal space-time block coded (STBC) large-MIMO systems that achieve high spectral efficiencies of the order of tens of bps/Hz. We also present a training-based iterative detection/channel estimation scheme for such large STBC MIMO systems. Our simulation results show that excellent bit error rate and nearness-to-capacity performance are achieved by the proposed multistage likelihood ascent search (M-LAS) detector in conjunction with the proposed iterative detection/channel estimation scheme at low complexities. The fact that we could show such good results for large STBCs like 16x16 and 32x32 STBCs from Cyclic Division Algebras (CDA) operating at spectral efficiencies in excess of 20 bps/Hz (even after accounting for the overheads meant for pilot based training for channel estimation and turbo coding) establishes the effectiveness of the proposed detector and channel estimator. We decode perfect codes of large dimensions using the proposed detector. With the feasibility of such a low-complexity detection/channel estimation scheme, large-MIMO systems with tens of antennas operating at several tens of bps/Hz spectral efficiencies can become practical, enabling interesting high data rate wireless applications.Comment: v3: Performance/complexity comparison of the proposed scheme with other large-MIMO architectures/detectors has been added (Sec. IV-D). The paper has been accepted for publication in IEEE Journal of Selected Topics in Signal Processing (JSTSP): Spl. Iss. on Managing Complexity in Multiuser MIMO Systems. v2: Section V on Channel Estimation is update

    Near-Instantaneously Adaptive HSDPA-Style OFDM Versus MC-CDMA Transceivers for WIFI, WIMAX, and Next-Generation Cellular Systems

    No full text
    Burts-by-burst (BbB) adaptive high-speed downlink packet access (HSDPA) style multicarrier systems are reviewed, identifying their most critical design aspects. These systems exhibit numerous attractive features, rendering them eminently eligible for employment in next-generation wireless systems. It is argued that BbB-adaptive or symbol-by-symbol adaptive orthogonal frequency division multiplex (OFDM) modems counteract the near instantaneous channel quality variations and hence attain an increased throughput or robustness in comparison to their fixed-mode counterparts. Although they act quite differently, various diversity techniques, such as Rake receivers and space-time block coding (STBC) are also capable of mitigating the channel quality variations in their effort to reduce the bit error ratio (BER), provided that the individual antenna elements experience independent fading. By contrast, in the presence of correlated fading imposed by shadowing or time-variant multiuser interference, the benefits of space-time coding erode and it is unrealistic to expect that a fixed-mode space-time coded system remains capable of maintaining a near-constant BER

    Multiuser MIMO-OFDM for Next-Generation Wireless Systems

    No full text
    This overview portrays the 40-year evolution of orthogonal frequency division multiplexing (OFDM) research. The amelioration of powerful multicarrier OFDM arrangements with multiple-input multiple-output (MIMO) systems has numerous benefits, which are detailed in this treatise. We continue by highlighting the limitations of conventional detection and channel estimation techniques designed for multiuser MIMO OFDM systems in the so-called rank-deficient scenarios, where the number of users supported or the number of transmit antennas employed exceeds the number of receiver antennas. This is often encountered in practice, unless we limit the number of users granted access in the base station’s or radio port’s coverage area. Following a historical perspective on the associated design problems and their state-of-the-art solutions, the second half of this treatise details a range of classic multiuser detectors (MUDs) designed for MIMO-OFDM systems and characterizes their achievable performance. A further section aims for identifying novel cutting-edge genetic algorithm (GA)-aided detector solutions, which have found numerous applications in wireless communications in recent years. In an effort to stimulate the cross pollination of ideas across the machine learning, optimization, signal processing, and wireless communications research communities, we will review the broadly applicable principles of various GA-assisted optimization techniques, which were recently proposed also for employment inmultiuser MIMO OFDM. In order to stimulate new research, we demonstrate that the family of GA-aided MUDs is capable of achieving a near-optimum performance at the cost of a significantly lower computational complexity than that imposed by their optimum maximum-likelihood (ML) MUD aided counterparts. The paper is concluded by outlining a range of future research options that may find their way into next-generation wireless systems

    Approximate minimum BER power allocation for MIMO-THP system

    No full text
    This paper proposes a transmit power allocation (TPA) scheme based on multiple-input multiple-output (MIMO) Tomlinson-Harashima precoding (THP) structure, where a TPA matrix is introduced to the conventional MIMO-THP. We analyze the influence of the introduced TPA matrix on the performance of MIMO-THP. The proposed TPA scheme invokes the minimum average uncoded bit-error rate (BER) criterion subjected to a sum-power constraint. During the derivation, we consider the effects of precoding loss factor on the TPA scheme and obtain a closed-form expression of the TPA. Compared to existing TPA methods for MIMO-THP systems, the proposed scheme reduces processing complexity and improves the BER performance

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Transmit Diversity Assisted Space Shift Keying for Colocated and Distributed/Cooperative MIMO Elements

    No full text
    Space Shift Keying (SSK) modulation is a recently proposed MIMO technique, which activates only a single transmit antenna during each time slot and uses the specific index of the activated transmit antenna to implicitly convey information. Activating a single antenna is beneficial in terms of eliminating the inter-channel interference, and mitigates the peak-to-mean power ratio, while avoiding the need for synchronisation among transmit antennas. However, this benefit is achieved at a sacrifice, since the transmit diversity gain potential of the multiple transmit antennas is not fully exploited in existing SSK assisted systems. Furthermore, a high SSK throughput requires the transmitter to employ a high number of transmit antennas, which is not always practical. Hence, we propose four algorithms, namely open-loop Space Time Space Shift Keying (ST-SSK), closed-loop feedback-aided phase rotation, feedback-aided power allocation, and cooperative ST-SSK, for the sake of achieving a diversity gain. The performance improvements of the proposed schemes are demonstrated by Monte-Carlo simulations for spatially independent Rayleigh fading channels. Their robustness against channel estimation errors is also considered. We advocate the proposed ST-SSK techniques, which are capable of achieving a transmit diversity gain of about 10 dB at a BER of 10-5, at a cost of imposing a moderate throughput loss dedicated to a modest feedback overhead. Furthermore, our proposed ST-SSK scheme lends itself to efficient communication, because the deleterious effects of deep shadow fading no longer impose spatial correlation on the signals received by the antennas, which cannot be readily avoided by co-located antenna elements
    corecore