8 research outputs found

    Performance improvement of a direct carbon solid oxide fuel cell through integrating an Otto heat engine

    Get PDF
    This research is supported by the Natural Science Foundation of Zhejiang Province (Grant No. LQ14E060001), National Natural Science Foundation of China (Grant No. 51406091), a grant (PolyU 152127/14E) from Research Grant Council, University Grants Committee, Hong Kong SAR, a grant from Environment and Conservation Fund (ECF 54/2015), Hong Kong SAR, and the K. C. Wong Magna Fund in Ningbo University.A novel system consisting of an external heat source, a direct carbon solid oxide fuel cell (DC-SOFC), a regenerator and an air standard Otto cycle engine is proposed to improve the performance of the DC-SOFC. Considering the electrochemical/chemical reactions, ionic/electronic charge transport, mass/momentum transport and heat transfer, a 2D tubular DC-SOFC model shows that the overall heat released in the cell can be smaller than, equal to or larger than the heat required by the internal Boudouard reaction. Three different operating modes of the proposed system are identified, and accordingly, analytical expressions for the equivalent power output and efficiency of the proposed system are derived under different operating conditions. The modeling results show that the Otto heat engine can effectively recover the waste heat from the DC-SOFC for additional power production especially at large operating current density. Comprehensive parametric studies are conducted to investigate the effects of the different operating conditions of DC-SOFC on its performance and heat generation. The effects of compression ratio, internal irreversibility factor and power dissipation of the Otto heat engine on the system performance improvement are also studied.PostprintPeer reviewe

    Thermodynamic assessment and multi-objective optimization of performance of irreversible Dual-Miller cycle

    Get PDF
    In this study, a new series of assessments and evaluations of the Dual-Miller cycle is performed. Furthermore, the specified output power and the thermal performance associated with the engine are determined. Besides, multi-objective optimization of thermal efficiency, ecological coefficient of performance (ECOP) and ecological function (Eun) by means of NSGA-II technique and thermodynamic analysis are presented. The Pareto optimal frontier obtaining the best optimum solution is identified by fuzzy Bellman-Zadeh, Linear Programming Technique for Multidimensional Analysis of Preference (LINMAP), and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) decision-making techniques. Based on the results, performances of dual-Miller cycles and their optimization are improved. For the results of the condition that (n k) the best point has been LINMAP and TOPSIS answer. The thermal efficiency for this point has been 0.5385. Also, ECOP and Eun have been 1.6875 and 279.7315, respectively. Furthermore, the errors are examined through comparison of the average and maximum errors of the two scenarios

    Inverted Brayton Cycles for Exhaust Gas Energy Recovery

    Get PDF

    Carnot Cycle and Heat Engine Fundamentals and Applications II

    Get PDF
    This second Special Issue connects both the fundamental and application aspects of thermomechanical machines and processes. Among them, engines have the largest place (Diesel, Lenoir, Brayton, Stirling), even if their environmental aspects are questionable for the future. Mechanical and chemical processes as well as quantum processes that could be important in the near future are considered from a thermodynamical point of view as well as for applications and their relevance to quantum thermodynamics. New insights are reported regarding more classical approaches: Finite Time Thermodynamics F.T.T.; Finite Speed thermodynamics F.S.T.; Finite Dimensions Optimal Thermodynamics F.D.O.T. The evolution of the research resulting from this second Special Issue ranges from basic cycles to complex systems and the development of various new branches of thermodynamics

    Optimización termodinámica de plantas termosolares híbridas de ciclo Brayton

    Get PDF
    [ES] La actual intensificación antropogénica del cambio climático junto con el agotamiento de los combustibles fósiles han impuesto un nuevo paradigma energético en el que destaca la necesidad de generar más potencia eléctrica, pero a partir de fuentes de energía más limpias y que reduzcan las emisiones contaminantes asociadas. La energía solar de concentración (Concentrated Solar Power, CSP), que emplea la radiación solar como principal fuente de energía, es una de las opciones más interesantes entre las diferentes energías renovables. En los sistemas que emplean esta tecnología, se concentra la radiación solar normal para obtener energía térmica a altas temperaturas y, a continuación, esta energía se transforma en energía eléctrica mediante un ciclo termodinámico y un generador eléctrico. De este modo, la energía termosolar de concentración permite producir energía de forma fiable, estable, segura, eficiente y limpia puesto que reduce, o incluso elimina por completo, las emisiones contaminantes de efecto invernadero asociadas con los combustibles convencionales y los problemas derivados de ellas. Una de las principales ventajas de los sistemas de energía termosolar de concentración radica en su potencial para ser hibridados con otras fuentes de energía y para almacenar energía solar en forma de calor, de modo que se pueda producir energía eléctrica cuando se desee y que se complete y rectifique el aporte de calor solar, que es intrínsecamente variable. Esta tesis doctoral está dedicada a estudiar una planta de concentración termosolar (CSP) desde el punto de vista termodinámico; en concreto, una planta solar de torre central (Solar Power Tower, SPT) acoplada a un ciclo Brayton híbrido. La planta en estudio está formada por un campo de heliostatos que apuntan hacia un receptor solar, donde se absorbe la radiación solar. A continuación, se intercambia este calor solar concentrado con un fluido de trabajo que lo absorbe y desarrolla un ciclo Brayton. El objetivo de la planta es funcionar como planta de generación de carga base (baseload), es decir, producir y entregar a la red eléctrica una potencia neta constante e independiente de la radiación solar. Para ello, se hibrida la turbina de gas en serie con una cámara de combustión, lo cual asegura una temperatura de entrada a la turbina constante y, como consecuencia, una potencia de salida constante. Si el aporte de calor solar no es suficiente para alcanzar la temperatura de entrada a la turbina impuesta, entonces la cámara de combustión quema gas natural completando y rectificando así la entrada de calor solar. Respecto al estado de la cuestión, existe una escasez significativa de estudios que se centren en integrar todos los subsistemas y en analizar sus inter-relaciones y cómo afectan estas a la planta global. Por consiguiente, los objetivos de la tesis comprenden el desarrollo de un modelo teórico y su implementación en un código propio para realizar simulaciones, tanto en el punto de diseño como dinámicas, que puedan ofrecer información valiosa sobre las pérdidas de energía y sobre las configuraciones que traen consigo mejores registros de salida. En esta tesis doctoral se analizan dos tipos de sistemas diferentes teniendo en cuenta el tamaño de la planta y la simetría del campo de heliostatos. Primero se evalúa una planta similar a SOLUGAS con una potencia de alredor de 5 MW y un campo polar. En segundo lugar, se examina una planta más grande, de aproximadamente 20 MW, y con un campo circundante. En este caso, para el dimensionamiento de los parámetros se emplea la planta GEMASOLAR, aunque se simula un ciclo Brayton en vez del ciclo Rankine propio de GEMA- SOLAR. Asimismo, otro objetivo de este estudio es la comparación de dos unidades de potencia diferentes (turbina de gas y turbina de vapor), pero con potencias similares, y con dimensiones del subsistema solar también similares. Por otro lado, se validan las predicciones del modelo mediante varios paquetes de software comerciales y utilizando datos de la literatura. Además de esta validación, también se realizan una comparación y una simple contextualización de las variables de salida de los modelos de los diferentes subsistemas. En el código se implementan datos meteorológicos reales de la localización específica, tales como irradiancia solar directa normal (Direct Normal Irradiance, DNI) y temperatura ambiente. Asimismo, en el subsistema solar se tienen en cuenta otros parámetros de entrada como la altura de la torre, el tamaño del receptor, la reflectividad de los heliostatos o el área de los espejos. Los principales parámetros de la máquina térmica incluidos para la modelización de la planta son la relación de presiones, la temperatura de entrada a la turbina, el flujo de masa del fluido de trabajo, las eficiencias de la turbina y el compresor y las caídas de presión asociadas con la cesión y absorción de calor. De entre los parámetros de salida analizados, varios están relacionados con diferentes eficiencias: eficiencia térmica global, eficiencia óptica del campo de heliostatos, eficiencia del subsistema solar y eficiencia de la máquina térmica. Igualmente, se calculan todas las tempera- turas y todos los flujos de calor del ciclo. Al mismo tiempo, se estudian otras variables como la fracción solar o solar share, la potencia de salida, el consumo específico de combustible y las emisiones de efecto invernadero correspondientes. Desde la perspectiva termo-económica, se evalúan la energía neta, el Coste Normalizado de la Electricidad (Levelised Cost of Electricity, LCoE) y sus componentes. Con el objetivo de analizar el comportamiento de diferentes fluidos de trabajo, se simula un ciclo cerrado mediante intercambiadores de calor. Así, se estudian aire seco, nitrógeno, dióxido de carbono y helio. También se examina la influencia del número de etapas de compresión y expansión. Por otro lado, se lleva a cabo un proceso de pre-optimización buscando configuraciones óptimas para la relación de presiones que impliquen mejores valores de las variables de salida. Las simulaciones diarias confirman que se ha cumplido el objetivo de generar una potencia de salida estable. Por otro lado, el comportamiento estacional se traslada directamente a la anchura y a la altura de las curvas de evolución diaria de variables de salida tales como eficiencias y temperaturas. Una conclusión clave de las simulaciones anuales fuera de diseño es que, entre todos los subsistemas, la máquina térmica se asocia potencialmente con la mejora más significativa de los registros de salida analizados. Asimismo, se investiga la influencia del recuperador en el esquema de la planta y se ha demostrado que su presencia es positiva tanto desde el punto de vista termodinámico como termo-económico. Igualmente, también se varía la localización de la planta para evaluar su efecto en las variables del modelo. Finalmente, los análisis de sensibilidad llevados a cabo permiten demostrar que, respecto de la relación de presiones, el Coste Normalizado de la Electricidad presenta todavía potencial para su reducción. Aparte de estos resultados concretos, la tesis doctoral revela la importancia de diseñar como un todo los sistemas solares de torre central acoplados a una turbina de gas híbrida, teniendo en cuenta la interacción entre los diferentes subsistemas. Por tanto, esta tesis doctoral puede ser útil en una etapa inicial de diseño de futuros sistemas solares de concentración de torre central que realicen ciclos Brayton híbridos

    Optimum criteria on the performance of an irreversible Braysson heat engine based on the new thermoeconomic approach

    No full text
    We have found that various ordered mixed surface structures are formed by coadsorption of two dissimilar metal atoms on Cu(001) at room temperature, using low-energy electron diffraction (LEED) I-V analysis. As coadsorbates, we employed Mg, Bi, Li and K, and surface structures formed by the coadsorption systems of (Mg, Li), (Mg, K) and (Mg, Bi) are presented. A tensor LEED analysis provided detailed geometries of the coadsorbates and the substrate surface. It was found that the surface structures in the above three coadsorption systems exhibit the restructuring of the Cu(001) surface. The phase separation into individual adsorbates does not take place, implying that some additional stabilization arises. We demonstrate two origins for the stabilization of the ordered mixed surface structures on Cu(001). Structures and features formed by the individual adsorption of Mg, Bi, Li and K atoms on Cu(001) are described first, then those of (2root2 x root2)R45degrees-Mg,Li, (root5 x root5)R26.7degrees-Mg,K, c(2 x 2)-Mg,Bi, and c(6 x 4)-Mg,Bi structures formed by the coadsorption are presented. We consider on the basis of the determined structural parameters the question why ordered mixed surface structures are formed instead of the phase separation. (C) 2004 Elsevier Ltd. All rights reserved

    Optimum Criteria on the Performance of an Irreversible Braysson Heat Engine Based on the new Thermoeconomic Approach

    No full text
    An irreversible cycle model of a Braysson heat engine operating between two heat reservoirs is used to investigate the thermoeconomic performance of the cycle affected by the finite-rate heat transfer between the working fluid and the heat reservoirs, heat leak loss from the heat source to the ambient and the irreversibility within the cycle. The thermoeconomic objective function, defined as the total cost per unit power output, is minimized with respect to the cycle temperatures along with the isobaric temperature ratio for a given set of operating parameters. The objective function is found to be an increasing function of the internal irreversibility parameter, economic parameters and the isobaric temperature ratio. On the other hand, there exist the optimal values of the state point temperatures, power output and thermal efficiency at which the objective function attains its minimum for a typical set of operating parameters. Moreover, the objective function and the corresponding power output are also plotted against the state point temperature and thermal efficiency for a different set of operating parameters. The optimally operating regions of these important parameters in the cycle are also determined. The results obtained here may provide some useful criteria for the optimal design and performance improvements, from the point of view of economics as well as from the point of view of thermodynamics of an irreversible Braysson heat engine cycle and other similar cycles as well
    corecore