8 research outputs found

    On Construction of Bit-Interleaved Coded Modulation Systems with Iterative Decoding

    Get PDF
    A new construction of Bit-Interleaved Coded Modulation systems with Iterative Decoding (BICM-ID) is proposed to achieve the best performance over white additive Gaussian noise (AWGN) channels, assuming that the ideal feedback (IF) holds for iterative decoding. For a class of so-called regular IF mappings, new upper bounds for error probabilities are presented for both cases of BICM-ID systems using overall and in-line interleaving. Search results for component Recursive Systematic Convolutional (RSC) codes with and without puncturing are reported for 4-PSK and 8-PSK signal sets

    Bandwidth efficient CCSDS coding standard proposals

    Get PDF
    The basic concatenated coding system for the space telemetry channel consists of a Reed-Solomon (RS) outer code, a symbol interleaver/deinterleaver, and a bandwidth efficient trellis inner code. A block diagram of this configuration is shown. The system may operate with or without the outer code and interleaver. In this recommendation, the outer code remains the (255,223) RS code over GF(2 exp 8) with an error correcting capability of t = 16 eight bit symbols. This code's excellent performance and the existence of fast, cost effective, decoders justify its continued use. The purpose of the interleaver/deinterleaver is to distribute burst errors out of the inner decoder over multiple codewords of the outer code. This utilizes the error correcting capability of the outer code more efficiently and reduces the probability of an RS decoder failure. Since the space telemetry channel is not considered bursty, the required interleaving depth is primarily a function of the inner decoding method. A diagram of an interleaver with depth 4 that is compatible with the (255,223) RS code is shown. Specific interleaver requirements are discussed after the inner code recommendations

    Multipath/modulation study for the tracking and data relay satellite system Final report, 14 Apr. 1969 - 12 Jan. 1970

    Get PDF
    Multipath modulation study of tracking and data relay satellite syste

    A small terminal for satellite communication systems

    Get PDF
    A small portable, low-cost satellite communications terminal system incorporating a modulator/demodulator and convolutional-Viterbi coder/decoder is described. Advances in signal processing and error-correction techniques in combination with higher power and higher frequencies aboard satellites allow for more efficient use of the space segment. This makes it possible to design small economical earth stations. The Advanced Communications Technology Satellite (ACTS) was chosen to test the system. ACTS, operating at the Ka band incorporates higher power, higher frequency, frequency and spatial reuse using spot beams and polarization

    Space-Time Codes for MIMO systems : Quasi-Orthogonal design and concatenation

    Get PDF
    Der Nachfrage an Mobilfunksystemen mit hoher Datenrate und Übertragungsqualität für eine Vielfalt von Anwendungen ist in den letzten Jahren dramatisch gestiegen. Zur Deckung des hohen Bedarfs werden jedoch neue Konzepte und Technologien benötigt, die den Beeinträchtigungen des Mobilfunkkanals entgegenwirken oder sich diese zu Nutze machen und die knappen Ressourcen wie Bandbreite und Leistung optimal ausnutzen. Eine effiziente Maßnahme zur Erhöhung der Performanz stellen Mehrantennensysteme dar. Um das große Potenzial von solchen Mehrantennensystemen auszunutzen, wurden neue Sendestrategien, so genannte Raum-Zeit Codes entworfen und analysiert, die neben der zeitlichen und spektralen auch die räumliche Komponente ausnutzen sollen. In dieser Arbeit wird die Leistungsfähigkeit solcher Raum-Zeit Codes zunächst isoliert und später, im zweiten Teil der Arbeit, in Kombination mit herkömmlichen Kanalcodierungsverfahren untersucht. Im ersten Abschnitt, d.h. im Fall ohne herkömmliche Kanalcodierung liegt der Fokus auf diversitäts-orientierten Raum-Zeit Codes. Zunächst werden basierend auf den Raum-Zeit Codes mit orthogonaler Struktur (OSTBC) Raum-Zeit Codes mit quasi-orthogonaler Struktur für eine beliebige Anzahl von Sende-und Empfangsantennen entworfen. Aus der Konstruktion resultieren dann zwei Gruppen von Codes. Die wesentliche Charakteristik der ersten Gruppe ist es, dass sie Verbindungen mit hoher Qualität gewährleistet. Dies wird erreicht, indem räumliche und zeitliche Redundanz eingebracht wird und daraus die volle Diversität (entspricht dem maximalen Abfall der Bitfehlerratenkurve) resultiert. Volle Diversität wird auch von den OSTBC erreicht, die aufgrund ihrer Struktur den matrix-wertigen Kanal für Mehrantennensysteme, so genannte Multiple-Input-Multiple-Output (MIMO)-Kanäle in parallele skalare Ersatzkanäle, so genannte Single-Input-Single-Output (SISO)-Kanäle, transformieren. Die Anzahl der parallelen Ersatzkanäle entspricht dabei der Anzahl der Sendeantennen. Diese Erkenntnis und die Einsicht in die Eigenschaften dieser Ersatzkanäle waren ein wichtiger Meilenstein und ermöglichten es, die Leistungsfähigkeit der OSTBC zu analysieren. Die Bestimmung der Ersatzkanalstuktur ist daher auch hier von zentraler Bedeutung. Im Falle von Raum-Zeit Codes mit quasi-orthogonaler Struktur wird in dieser Arbeit gezeigt, dass der MIMO-Kanal in einen block-diagonalen MIMO-Kanal zerlegt wird, dessen Eigenvektoren konstant und Blöcke identisch sind. Weiterhin konnte gezeigt werden, dass die Eigenwerte von jedem Block voneinander unabhängig sind und einer nichtzentralen Chi-Quadrat-Verteilung mit einer Anzahl von Freiheitsgraden, die dem Vierfachen der Anzahl der Empfangsantennen entspricht, folgen. Durch Lockerung der Anforderung von voller Diversität an die zu entwerfenden Codes gelangt man zu der zweiten Gruppe der Raum-Zeit Codes mit quasi-orthogonaler Stuktur, welche eine Verallgemeinerung der OSTBC darstellen. Insbesondere wird in dieser Arbeit gezeigt, dass nicht nur das Alamouti-Schema, ein OSTBC für zwei Sendeantennen, sondern auch eine verallgemeinerte Version dieses Alamouti-Schemas, die Kapazität im Falle einer Empfangsantenne erreicht. Die in dieser Arbeit entworfenen Raum-Zeit Codes werden schließlich hinsichtlich ihrer Fehlerraten-Performanz und ihrer spektralen Effizienz mit optimalen als auch mit suboptimalen Empfängerstrukturen analysiert. Im zweiten Teil dieser Arbeit werden verschiedene Raum-Zeit Codes mit herkömmlichen Kanalcodierungsverfahren kombiniert. Dabei werden neue Empfängerstrukturen vorgestellt und die Leistungsfähigkeit der Raum-Zeit Codes mit iterativen Algorithmen zur so genannten Soft-Input-Soft-Output-Decodierung mit Hilfe von neuen Analysetechniken, den so genannten EXIT-Charts, untersucht und optimiert. Im Falle von OSTBC werden zusätzlich Kriterien für die optimale Abbildung von Bitsequenzen auf Sendesymbole hergeleitet.The demand for mobile communication systems with high data rates and improved link quality for a variety of applications has dramatically increased in recent years. New concepts and methods are necessary in order to cover this huge demand, which counteract or take advantage of the impairments of the mobile communication channel and optimally exploit the limited resources such as bandwidth and power. Multiple antenna systems are an efficient means for increasing the performance. In order to utilize the huge potential of multiple antenna concepts, it is necessary to resort to new transmit strategies, referred to as Space-Time Codes, which, in addition to the time and spectral domain, also use the spatial domain. The performance of such Space-Time Codes is analyzed in this thesis with and without conventional channel coding strategies. In case without conventional channel codes, the focus is on diversity-oriented Space-Time Codes. Based on Space-Time Block Codes from orthogonal designs (OSTBC), the Space-Time Block Codes from quasi-orthogonal designs are developed for any number of transmit and receive antennas. The outcome of this construction are two groups of codes. The main property of the first group is the support of links with high quality. This is achieved by incorporating spatial and temporal redundancy, which results in full diversity or in other words, in the maximum decay of the bit error rate curves. Full diversity is also achieved by OSTBC, which due to their structure transform the matrix-valued channel for multi-antenna systems, so called multiple-input-multiple-output (MIMO)-channels, into several parallel, scalar single-input-single-output (SISO)-channels. This insight and the understanding of the properties of the equivalent SISO-channels were the key results in order to analyze the performance of the OSTBC. The determination of the structure of the equivalent channel is also a matter of vital importance in this work. To this end, we show that the MIMO-channel in the case of Space-Time Codes from quasi-orthogonal designs is transformed into an equivalent block-diagonal MIMO-channel with identical blocks having constant eigenvectors, independent of the channel realization. Furthermore, we show that the eigenvalues of each block are pairwise independent and follow a non-central chi-square distribution, where the number of degrees of freedom equals four times the number of receive antennas. By relaxing the requirement of full diversity one arrives at the second group of Space-Time Codes from quasi-orthogonal designs. These codes represent a generalization of Space-Time Codes from orthogonal designs. Particularly, we show in this work, that not only the Alamouti-scheme, a OSTBC for two transmit antennas, but also its generalized version achieves capacity in the case of one receive antenna. The drafted codes are then analyzed with respect to the error rate performance and the spectral efficiency with optimal as well as suboptimal receiver structures. In the second part of this work the combination of Space-Time Codes with conventional channel coding techniques is considered. New receiver structures are presented and the performance of Space-Time Codes with iterative algorithms for soft-input-soft-output-decoding is analyzed and optimized with the help of new analytical tools, the so called EXIT-charts. Furthermore, some criteria for the optimal mapping strategy are derived in the case of OSTBC

    Modulation classification of digital communication signals

    Get PDF
    Modulation classification of digital communications signals plays an important role in both military and civilian sectors. It has the potential of replacing several receivers with one universal receiver. An automatic modulation classifier can be defined as a system that automatically identifies the modulation type of the received signal given that the signal exists and its parameters lie in a known range. This thesis addresses the need for a universal modulation classifier capable of classifying a comprehensive list of digital modulation schemes. Two classification approaches are presented: a decision-theoretic (DT) approach and a neural network (NN) approach. First classifiers are introduced that can classify ASK, PSK, and FSK signals. A decision tree is designed for the DT approach and a NN structure is formulated und trained to classify these signals. Both classifiers use the same key features derived from the intercepted signal. These features are based on the instantaneous amplitude, instantaneous phase, and instantaneous frequency of the intercepted signal, and the cumulates of its complex envelope. Threshold values for the DT approach are found from the minimum total error probabilities of the extracted key features at SNR of 20 to -5dB. The NN parameters are found by training the networks on the same data. The DT and NN classifiers are expanded to include CPM signals. Signals within the CPM class are also added to the classifiers and a separate decision tree and new NN structure are found far these signals. New key features to classify these signals are also introduced. The classifiers are then expanded further to include multiple access signals, followed by QAM, PSK8 and FSK8 signals. New features arc found to classify these signals. The final decision tree is able to accommodate a total of fifteen different modulation types. The NN structure is designed in a hierarchical fashion to optimise the classification performance of these fifteen digital modulation schemes. Both DT and NN classifiers are able to classify signals with more than 90% accuracy in the presence of additive white Gaussian within SNR ranging from 20 to 5dB. However, the performance of the NN classifier appears to be more robust as it degrades gradually at the SNRs of 0 and -5dB. At -5dB, the NN has an overall accuracy of 73.58%, whereas the DT classifier achieves only 47.3% accuracy. The overall accuracy of the NN classifier, over the combined SNR range of 20 to -5dB, is 90.7% compared to 84.56% for the DT classifier. Finally, the performances of these classifiers are tested in the presence of Rayleigh fading. The DT and NN classifier structures are modified to accommodate fading and again, new key features are introduced to accomplish this. With the modifications, the overall accuracy of the NN classifier, over the combined SNR range of 20 to -5dB and 120Hz Doppler shift, is 87.34% compared to 80.52% for the DT classifier

    Optimum Binary to Symbol Coding for 6PSK and Bit Error Rate Performance

    No full text
    corecore