72 research outputs found

    Brain-Switches for Asynchronous Brain−Computer Interfaces: A Systematic Review

    Get PDF
    A brain–computer interface (BCI) has been extensively studied to develop a novel communication system for disabled people using their brain activities. An asynchronous BCI system is more realistic and practical than a synchronous BCI system, in that, BCI commands can be generated whenever the user wants. However, the relatively low performance of an asynchronous BCI system is problematic because redundant BCI commands are required to correct false-positive operations. To significantly reduce the number of false-positive operations of an asynchronous BCI system, a two-step approach has been proposed using a brain-switch that first determines whether the user wants to use an asynchronous BCI system before the operation of the asynchronous BCI system. This study presents a systematic review of the state-of-the-art brain-switch techniques and future research directions. To this end, we reviewed brain-switch research articles published from 2000 to 2019 in terms of their (a) neuroimaging modality, (b) paradigm, (c) operation algorithm, and (d) performance

    Support vector machines to detect physiological patterns for EEG and EMG-based human-computer interaction:a review

    Get PDF
    Support vector machines (SVMs) are widely used classifiers for detecting physiological patterns in human-computer interaction (HCI). Their success is due to their versatility, robustness and large availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM implementation and/or parameters selection are reported, making it impossible to reproduce study analysis and results. In order to perform an optimized classification and report a proper description of the results, it is necessary to have a comprehensive critical overview of the applications of SVM. The aim of this paper is to provide a review of the usage of SVM in the determination of brain and muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with a description of several relevant literature implementations. Furthermore, details concerning reviewed papers are listed in tables and statistics of SVM use in the literature are presented. Suitability of SVM for HCI is discussed and critical comparisons with other classifiers are reported

    Standardization of Protocol Design for User Training in EEG-based Brain-Computer Interface

    Get PDF
    International audienceBrain-computer interfaces (BCIs) are systems that enable a personto interact with a machine using only neural activity. Such interaction canbe non-intuitive for the user hence training methods are developed to increaseone’s understanding, confidence and motivation, which would in parallel increasesystem performance. To clearly address the current issues in the BCI usertraining protocol design, here it is divided intointroductoryperiod and BCIinteractionperiod. First, theintroductoryperiod (before BCI interaction) mustbe considered as equally important as the BCI interaction for user training. Tosupport this claim, a review of papers show that BCI performance can dependon the methodologies presented in such introductory period. To standardize itsdesign, the literature from human-computer interaction (HCI) is adjusted to theBCI context. Second, during the user-BCI interaction, the interface can takea large spectrum of forms (2D, 3D, size, color etc.) and modalities (visual,auditory or haptic etc.) without following any design standard or guidelines.Namely, studies that explore perceptual affordance on neural activity show thatmotor neurons can be triggered from a simple observation of certain objects, anddepending on objects’ properties (size, location etc.) neural reactions can varygreatly. Surprisingly, the effects of perceptual affordance were not investigatedin the BCI context. Both inconsistent introductions to BCI as well as variableinterface designs make it difficult to reproduce experiments, predict their outcomesand compare results between them. To address these issues, a protocol designstandardization for user training is proposed

    Brain-Computer Interface Robotics for Hand Rehabilitation After Stroke: A Systematic Review

    Get PDF
    Background Hand rehabilitation is core to helping stroke survivors regain activities of daily living. Recent studies have suggested that the use of electroencephalography-based brain-computer interfaces (BCI) can promote this process. Here, we report the first systematic examination of the literature on the use of BCI-robot systems for the rehabilitation of fine motor skills associated with hand movement and profile these systems from a technical and clinical perspective. Methods A search for January 2010–October 2019 articles using Ovid MEDLINE, Embase, PEDro, PsycINFO, IEEE Xplore and Cochrane Library databases was performed. The selection criteria included BCI-hand robotic systems for rehabilitation at different stages of development involving tests on healthy participants or people who have had a stroke. Data fields include those related to study design, participant characteristics, technical specifications of the system, and clinical outcome measures. Results 30 studies were identified as eligible for qualitative review and among these, 11 studies involved testing a BCI-hand robot on chronic and subacute stroke patients. Statistically significant improvements in motor assessment scores relative to controls were observed for three BCI-hand robot interventions. The degree of robot control for the majority of studies was limited to triggering the device to perform grasping or pinching movements using motor imagery. Most employed a combination of kinaesthetic and visual response via the robotic device and display screen, respectively, to match feedback to motor imagery. Conclusion 19 out of 30 studies on BCI-robotic systems for hand rehabilitation report systems at prototype or pre-clinical stages of development. We identified large heterogeneity in reporting and emphasise the need to develop a standard protocol for assessing technical and clinical outcomes so that the necessary evidence base on efficiency and efficacy can be developed

    Defining brain–machine interface applications by matching interface performance with device requirements

    Get PDF
    Interaction with machines is mediated by human-machine interfaces (HMIs). Brain-machine interfaces (BMIs) are a particular class of HMIs and have so far been studied as a communication means for people who have little or no voluntary control of muscle activity. In this context, low-performing interfaces can be considered as prosthetic applications. On the other hand, for able-bodied users, a BMI would only be practical if conceived as an augmenting interface. In this paper, a method is introduced for pointing out effective combinations of interfaces and devices for creating real-world applications. First, devices for domotics, rehabilitation and assistive robotics, and their requirements, in terms of throughput and latency, are described. Second, HMIs are classified and their performance described, still in terms of throughput and latency. Then device requirements are matched with performance of available interfaces. Simple rehabilitation and domotics devices can be easily controlled by means of BMI technology. Prosthetic hands and wheelchairs are suitable applications but do not attain optimal interactivity. Regarding humanoid robotics, the head and the trunk can be controlled by means of BMIs, while other parts require too much throughput. Robotic arms, which have been controlled by means of cortical invasive interfaces in animal studies, could be the next frontier for non-invasive BMIs. Combining smart controllers with BMIs could improve interactivity and boost BMI applications. © 2007 Elsevier B.V. All rights reserved

    Controlling a Mouse Pointer with a Single-Channel EEG Sensor

    Get PDF
    Goals: The purpose of this study was to analyze the feasibility of using the information obtained from a one-channel electro-encephalography (EEG) signal to control a mouse pointer. We used a low-cost headset, with one dry sensor placed at the FP1 position, to steer a mouse pointer and make selections through a combination of the user’s attention level with the detection of voluntary blinks. There are two types of cursor movements: spinning and linear displacement. A sequence of blinks allows for switching between these movement types, while the attention level modulates the cursor’s speed. The influence of the attention level on performance was studied. Additionally, Fitts’ model and the evolution of the emotional states of participants, among other trajectory indicators, were analyzed. (2) Methods: Twenty participants distributed into two groups (Attention and No-Attention) performed three runs, on different days, in which 40 targets had to be reached and selected. Target positions and distances from the cursor’s initial position were chosen, providing eight different indices of difficulty (IDs). A self-assessment manikin (SAM) test and a final survey provided information about the system’s usability and the emotions of participants during the experiment. (3) Results: The performance was similar to some brain–computer interface (BCI) solutions found in the literature, with an averaged information transfer rate (ITR) of 7 bits/min. Concerning the cursor navigation, some trajectory indicators showed our proposed approach to be as good as common pointing devices, such as joysticks, trackballs, and so on. Only one of the 20 participants reported difficulty in managing the cursor and, according to the tests, most of them assessed the experience positively. Movement times and hit rates were significantly better for participants belonging to the attention group. (4) Conclusions: The proposed approach is a feasible low-cost solution to manage a mouse pointe
    • …
    corecore