374 research outputs found

    Stabilizing Training of Generative Adversarial Networks through Regularization

    Full text link
    Deep generative models based on Generative Adversarial Networks (GANs) have demonstrated impressive sample quality but in order to work they require a careful choice of architecture, parameter initialization, and selection of hyper-parameters. This fragility is in part due to a dimensional mismatch or non-overlapping support between the model distribution and the data distribution, causing their density ratio and the associated f-divergence to be undefined. We overcome this fundamental limitation and propose a new regularization approach with low computational cost that yields a stable GAN training procedure. We demonstrate the effectiveness of this regularizer across several architectures trained on common benchmark image generation tasks. Our regularization turns GAN models into reliable building blocks for deep learning

    Bayesian Compression for Deep Learning

    Get PDF
    Compression and computational efficiency in deep learning have become a problem of great significance. In this work, we argue that the most principled and effective way to attack this problem is by adopting a Bayesian point of view, where through sparsity inducing priors we prune large parts of the network. We introduce two novelties in this paper: 1) we use hierarchical priors to prune nodes instead of individual weights, and 2) we use the posterior uncertainties to determine the optimal fixed point precision to encode the weights. Both factors significantly contribute to achieving the state of the art in terms of compression rates, while still staying competitive with methods designed to optimize for speed or energy efficiency.Comment: Published as a conference paper at NIPS 201

    Function-space regularized R\'enyi divergences

    Full text link
    We propose a new family of regularized R\'enyi divergences parametrized not only by the order α\alpha but also by a variational function space. These new objects are defined by taking the infimal convolution of the standard R\'enyi divergence with the integral probability metric (IPM) associated with the chosen function space. We derive a novel dual variational representation that can be used to construct numerically tractable divergence estimators. This representation avoids risk-sensitive terms and therefore exhibits lower variance, making it well-behaved when α>1\alpha>1; this addresses a notable weakness of prior approaches. We prove several properties of these new divergences, showing that they interpolate between the classical R\'enyi divergences and IPMs. We also study the α→∞\alpha\to\infty limit, which leads to a regularized worst-case-regret and a new variational representation in the classical case. Moreover, we show that the proposed regularized R\'enyi divergences inherit features from IPMs such as the ability to compare distributions that are not absolutely continuous, e.g., empirical measures and distributions with low-dimensional support. We present numerical results on both synthetic and real datasets, showing the utility of these new divergences in both estimation and GAN training applications; in particular, we demonstrate significantly reduced variance and improved training performance.Comment: 24 pages, 4 figure

    Hierarchical Semi-Implicit Variational Inference with Application to Diffusion Model Acceleration

    Full text link
    Semi-implicit variational inference (SIVI) has been introduced to expand the analytical variational families by defining expressive semi-implicit distributions in a hierarchical manner. However, the single-layer architecture commonly used in current SIVI methods can be insufficient when the target posterior has complicated structures. In this paper, we propose hierarchical semi-implicit variational inference, called HSIVI, which generalizes SIVI to allow more expressive multi-layer construction of semi-implicit distributions. By introducing auxiliary distributions that interpolate between a simple base distribution and the target distribution, the conditional layers can be trained by progressively matching these auxiliary distributions one layer after another. Moreover, given pre-trained score networks, HSIVI can be used to accelerate the sampling process of diffusion models with the score matching objective. We show that HSIVI significantly enhances the expressiveness of SIVI on several Bayesian inference problems with complicated target distributions. When used for diffusion model acceleration, we show that HSIVI can produce high quality samples comparable to or better than the existing fast diffusion model based samplers with a small number of function evaluations on various datasets.Comment: 25 pages, 13 figures, NeurIPS 202
    • …
    corecore