6,216 research outputs found

    Interactive Visual Analysis of Networked Systems: Workflows for Two Industrial Domains

    Get PDF
    We report on a first study of interactive visual analysis of networked systems. Working with ABB Corporate Research and Ericsson Research, we have created workflows which demonstrate the potential of visualization in the domains of industrial automation and telecommunications. By a workflow in this context, we mean a sequence of visualizations and the actions for generating them. Visualizations can be any images that represent properties of the data sets analyzed, and actions typically either change the selection of data visualized or change the visualization by choice of technique or change of parameters

    Data Workflow - A Workflow Model for Continuous Data Processing

    Get PDF
    Online data or streaming data are getting more and more important for enterprise information systems, e.g. by integrating sensor data and workflows. The continuous flow of data provided e.g. by sensors requires new workflow models addressing the data perspective of these applications, since continuous data is potentially infinite while business process instances are always finite.\ud In this paper a formal workflow model is proposed with data driven coordination and explicating properties of the continuous data processing. These properties can be used to optimize data workflows, i.e., reducing the computational power for processing the workflows in an engine by reusing intermediate processing results in several workflows

    HEPCloud, a New Paradigm for HEP Facilities: CMS Amazon Web Services Investigation

    Full text link
    Historically, high energy physics computing has been performed on large purpose-built computing systems. These began as single-site compute facilities, but have evolved into the distributed computing grids used today. Recently, there has been an exponential increase in the capacity and capability of commercial clouds. Cloud resources are highly virtualized and intended to be able to be flexibly deployed for a variety of computing tasks. There is a growing nterest among the cloud providers to demonstrate the capability to perform large-scale scientific computing. In this paper, we discuss results from the CMS experiment using the Fermilab HEPCloud facility, which utilized both local Fermilab resources and virtual machines in the Amazon Web Services Elastic Compute Cloud. We discuss the planning, technical challenges, and lessons learned involved in performing physics workflows on a large-scale set of virtualized resources. In addition, we will discuss the economics and operational efficiencies when executing workflows both in the cloud and on dedicated resources.Comment: 15 pages, 9 figure

    ReStore: Reusing Results of MapReduce Jobs

    Full text link
    Analyzing large scale data has emerged as an important activity for many organizations in the past few years. This large scale data analysis is facilitated by the MapReduce programming and execution model and its implementations, most notably Hadoop. Users of MapReduce often have analysis tasks that are too complex to express as individual MapReduce jobs. Instead, they use high-level query languages such as Pig, Hive, or Jaql to express their complex tasks. The compilers of these languages translate queries into workflows of MapReduce jobs. Each job in these workflows reads its input from the distributed file system used by the MapReduce system and produces output that is stored in this distributed file system and read as input by the next job in the workflow. The current practice is to delete these intermediate results from the distributed file system at the end of executing the workflow. One way to improve the performance of workflows of MapReduce jobs is to keep these intermediate results and reuse them for future workflows submitted to the system. In this paper, we present ReStore, a system that manages the storage and reuse of such intermediate results. ReStore can reuse the output of whole MapReduce jobs that are part of a workflow, and it can also create additional reuse opportunities by materializing and storing the output of query execution operators that are executed within a MapReduce job. We have implemented ReStore as an extension to the Pig dataflow system on top of Hadoop, and we experimentally demonstrate significant speedups on queries from the PigMix benchmark.Comment: VLDB201
    corecore