3,634 research outputs found

    Learning from User Interactions with Rankings: A Unification of the Field

    Get PDF
    Ranking systems form the basis for online search engines and recommendation services. They process large collections of items, for instance web pages or e-commerce products, and present the user with a small ordered selection. The goal of a ranking system is to help a user find the items they are looking for with the least amount of effort. Thus the rankings they produce should place the most relevant or preferred items at the top of the ranking. Learning to rank is a field within machine learning that covers methods which optimize ranking systems w.r.t. this goal. Traditional supervised learning to rank methods utilize expert-judgements to evaluate and learn, however, in many situations such judgements are impossible or infeasible to obtain. As a solution, methods have been introduced that perform learning to rank based on user clicks instead. The difficulty with clicks is that they are not only affected by user preferences, but also by what rankings were displayed. Therefore, these methods have to prevent being biased by other factors than user preference. This thesis concerns learning to rank methods based on user clicks and specifically aims to unify the different families of these methods. As a whole, the second part of this thesis proposes a framework that bridges many gaps between areas of online, counterfactual, and supervised learning to rank. It has taken approaches, previously considered independent, and unified them into a single methodology for widely applicable and effective learning to rank from user clicks.Comment: PhD Thesis of Harrie Oosterhuis defended at the University of Amsterdam on November 27th 202

    Neural Collaborative Filtering

    Full text link
    In recent years, deep neural networks have yielded immense success on speech recognition, computer vision and natural language processing. However, the exploration of deep neural networks on recommender systems has received relatively less scrutiny. In this work, we strive to develop techniques based on neural networks to tackle the key problem in recommendation -- collaborative filtering -- on the basis of implicit feedback. Although some recent work has employed deep learning for recommendation, they primarily used it to model auxiliary information, such as textual descriptions of items and acoustic features of musics. When it comes to model the key factor in collaborative filtering -- the interaction between user and item features, they still resorted to matrix factorization and applied an inner product on the latent features of users and items. By replacing the inner product with a neural architecture that can learn an arbitrary function from data, we present a general framework named NCF, short for Neural network-based Collaborative Filtering. NCF is generic and can express and generalize matrix factorization under its framework. To supercharge NCF modelling with non-linearities, we propose to leverage a multi-layer perceptron to learn the user-item interaction function. Extensive experiments on two real-world datasets show significant improvements of our proposed NCF framework over the state-of-the-art methods. Empirical evidence shows that using deeper layers of neural networks offers better recommendation performance.Comment: 10 pages, 7 figure

    Dense Text Retrieval based on Pretrained Language Models: A Survey

    Full text link
    Text retrieval is a long-standing research topic on information seeking, where a system is required to return relevant information resources to user's queries in natural language. From classic retrieval methods to learning-based ranking functions, the underlying retrieval models have been continually evolved with the ever-lasting technical innovation. To design effective retrieval models, a key point lies in how to learn the text representation and model the relevance matching. The recent success of pretrained language models (PLMs) sheds light on developing more capable text retrieval approaches by leveraging the excellent modeling capacity of PLMs. With powerful PLMs, we can effectively learn the representations of queries and texts in the latent representation space, and further construct the semantic matching function between the dense vectors for relevance modeling. Such a retrieval approach is referred to as dense retrieval, since it employs dense vectors (a.k.a., embeddings) to represent the texts. Considering the rapid progress on dense retrieval, in this survey, we systematically review the recent advances on PLM-based dense retrieval. Different from previous surveys on dense retrieval, we take a new perspective to organize the related work by four major aspects, including architecture, training, indexing and integration, and summarize the mainstream techniques for each aspect. We thoroughly survey the literature, and include 300+ related reference papers on dense retrieval. To support our survey, we create a website for providing useful resources, and release a code repertory and toolkit for implementing dense retrieval models. This survey aims to provide a comprehensive, practical reference focused on the major progress for dense text retrieval

    A Neural Network Approach to Context-Sensitive Generation of Conversational Responses

    Full text link
    We present a novel response generation system that can be trained end to end on large quantities of unstructured Twitter conversations. A neural network architecture is used to address sparsity issues that arise when integrating contextual information into classic statistical models, allowing the system to take into account previous dialog utterances. Our dynamic-context generative models show consistent gains over both context-sensitive and non-context-sensitive Machine Translation and Information Retrieval baselines.Comment: A. Sordoni, M. Galley, M. Auli, C. Brockett, Y. Ji, M. Mitchell, J.-Y. Nie, J. Gao, B. Dolan. 2015. A Neural Network Approach to Context-Sensitive Generation of Conversational Responses. In Proc. of NAACL-HLT. Pages 196-20

    Improving End-to-End Sequential Recommendations with Intent-aware Diversification

    Get PDF
    Sequential Recommendation (SRs) that capture users' dynamic intents by modeling user sequential behaviors can recommend closely accurate products to users. Previous work on SRs is mostly focused on optimizing the recommendation accuracy, often ignoring the recommendation diversity, even though it is an important criterion for evaluating the recommendation performance. Most existing methods for improving the diversity of recommendations are not ideally applicable for SRs because they assume that user intents are static and rely on post-processing the list of recommendations to promote diversity. We consider both recommendation accuracy and diversity for SRs by proposing an end-to-end neural model, called Intent-aware Diversified Sequential Recommendation (IDSR). Specifically, we introduce an Implicit Intent Mining module (IIM) into SRs to capture different user intents reflected in user behavior sequences. Then, we design an Intent-aware Diversity Promoting (IDP) loss to supervise the learning of the IIM module and force the model to take recommendation diversity into consideration during training. Extensive experiments on two benchmark datasets show that IDSR significantly outperforms state-of-the-art methods in terms of recommendation diversity while yielding comparable or superior recommendation accuracy
    corecore