4,074 research outputs found

    Multi-Perspective Relevance Matching with Hierarchical ConvNets for Social Media Search

    Full text link
    Despite substantial interest in applications of neural networks to information retrieval, neural ranking models have only been applied to standard ad hoc retrieval tasks over web pages and newswire documents. This paper proposes MP-HCNN (Multi-Perspective Hierarchical Convolutional Neural Network) a novel neural ranking model specifically designed for ranking short social media posts. We identify document length, informal language, and heterogeneous relevance signals as features that distinguish documents in our domain, and present a model specifically designed with these characteristics in mind. Our model uses hierarchical convolutional layers to learn latent semantic soft-match relevance signals at the character, word, and phrase levels. A pooling-based similarity measurement layer integrates evidence from multiple types of matches between the query, the social media post, as well as URLs contained in the post. Extensive experiments using Twitter data from the TREC Microblog Tracks 2011--2014 show that our model significantly outperforms prior feature-based as well and existing neural ranking models. To our best knowledge, this paper presents the first substantial work tackling search over social media posts using neural ranking models.Comment: AAAI 2019, 10 page

    Optimizing Guided Traversal for Fast Learned Sparse Retrieval

    Full text link
    Recent studies show that BM25-driven dynamic index skipping can greatly accelerate MaxScore-based document retrieval based on the learned sparse representation derived by DeepImpact. This paper investigates the effectiveness of such a traversal guidance strategy during top k retrieval when using other models such as SPLADE and uniCOIL, and finds that unconstrained BM25-driven skipping could have a visible relevance degradation when the BM25 model is not well aligned with a learned weight model or when retrieval depth k is small. This paper generalizes the previous work and optimizes the BM25 guided index traversal with a two-level pruning control scheme and model alignment for fast retrieval using a sparse representation. Although there can be a cost of increased latency, the proposed scheme is much faster than the original MaxScore method without BM25 guidance while retaining the relevance effectiveness. This paper analyzes the competitiveness of this two-level pruning scheme, and evaluates its tradeoff in ranking relevance and time efficiency when searching several test datasets.Comment: This paper is published in WWW'2

    MWAND: A New Early Termination Algorithm for Fast and Efficient Query Evaluation

    Get PDF
    Nowadays, current information systems are so large and maintain huge amount of data. At every time, they process millions of documents and millions of queries. In order to choose the most important responses from this amount of data, it is well to apply what is so called early termination algorithms. These ones attempt to extract the Top-K documents according to a specified increasing monotone function. The principal idea behind is to reach and score the most significant less number of documents. So, they avoid fully processing the whole documents. WAND algorithm is at the state of the art in this area. Despite it is efficient, it is missing effectiveness and precision. In this paper, we propose two contributions, the principal proposal is a new early termination algorithm based on WAND approach, we call it MWAND (Modified WAND). This one is faster and more precise than the first. It has the ability to avoid unnecessary WAND steps. In this work, we integrate a tree structure as an index into WAND and we add new levels in query processing. In the second contribution, we define new fine metrics to ameliorate the evaluation of the retrieved information. The experimental results on real datasets show that MWAND is more efficient than the WAND approach

    Universal Indexes for Highly Repetitive Document Collections

    Get PDF
    Indexing highly repetitive collections has become a relevant problem with the emergence of large repositories of versioned documents, among other applications. These collections may reach huge sizes, but are formed mostly of documents that are near-copies of others. Traditional techniques for indexing these collections fail to properly exploit their regularities in order to reduce space. We introduce new techniques for compressing inverted indexes that exploit this near-copy regularity. They are based on run-length, Lempel-Ziv, or grammar compression of the differential inverted lists, instead of the usual practice of gap-encoding them. We show that, in this highly repetitive setting, our compression methods significantly reduce the space obtained with classical techniques, at the price of moderate slowdowns. Moreover, our best methods are universal, that is, they do not need to know the versioning structure of the collection, nor that a clear versioning structure even exists. We also introduce compressed self-indexes in the comparison. These are designed for general strings (not only natural language texts) and represent the text collection plus the index structure (not an inverted index) in integrated form. We show that these techniques can compress much further, using a small fraction of the space required by our new inverted indexes. Yet, they are orders of magnitude slower.Comment: This research has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Sk{\l}odowska-Curie Actions H2020-MSCA-RISE-2015 BIRDS GA No. 69094

    Managing tail latency in large scale information retrieval systems

    Get PDF
    As both the availability of internet access and the prominence of smart devices continue to increase, data is being generated at a rate faster than ever before. This massive increase in data production comes with many challenges, including efficiency concerns for the storage and retrieval of such large-scale data. However, users have grown to expect the sub-second response times that are common in most modern search engines, creating a problem - how can such large amounts of data continue to be served efficiently enough to satisfy end users? This dissertation investigates several issues regarding tail latency in large-scale information retrieval systems. Tail latency corresponds to the high percentile latency that is observed from a system - in the case of search, this latency typically corresponds to how long it takes for a query to be processed. In particular, keeping tail latency as low as possible translates to a good experience for all users, as tail latency is directly related to the worst-case latency and hence, the worst possible user experience. The key idea in targeting tail latency is to move from questions such as "what is the median latency of our search engine?" to questions which more accurately capture user experience such as "how many queries take more than 200ms to return answers?" or "what is the worst case latency that a user may be subject to, and how often might it occur?" While various strategies exist for efficiently processing queries over large textual corpora, prior research has focused almost entirely on improvements to the average processing time or cost of search systems. As a first contribution, we examine some state-of-the-art retrieval algorithms for two popular index organizations, and discuss the trade-offs between them, paying special attention to the notion of tail latency. This research uncovers a number of observations that are subsequently leveraged for improved search efficiency and effectiveness. We then propose and solve a new problem, which involves processing a number of related queries together, known as multi-queries, to yield higher quality search results. We experiment with a number of algorithmic approaches to efficiently process these multi-queries, and report on the cost, efficiency, and effectiveness trade-offs present with each. Ultimately, we find that some solutions yield a low tail latency, and are hence suitable for use in real-time search environments. Finally, we examine how predictive models can be used to improve the tail latency and end-to-end cost of a commonly used multi-stage retrieval architecture without impacting result effectiveness. By combining ideas from numerous areas of information retrieval, we propose a prediction framework which can be used for training and evaluating several efficiency/effectiveness trade-off parameters, resulting in improved trade-offs between cost, result quality, and tail latency

    Efficient query processing for scalable web search

    Get PDF
    Search engines are exceptionally important tools for accessing information in today’s world. In satisfying the information needs of millions of users, the effectiveness (the quality of the search results) and the efficiency (the speed at which the results are returned to the users) of a search engine are two goals that form a natural trade-off, as techniques that improve the effectiveness of the search engine can also make it less efficient. Meanwhile, search engines continue to rapidly evolve, with larger indexes, more complex retrieval strategies and growing query volumes. Hence, there is a need for the development of efficient query processing infrastructures that make appropriate sacrifices in effectiveness in order to make gains in efficiency. This survey comprehensively reviews the foundations of search engines, from index layouts to basic term-at-a-time (TAAT) and document-at-a-time (DAAT) query processing strategies, while also providing the latest trends in the literature in efficient query processing, including the coherent and systematic reviews of techniques such as dynamic pruning and impact-sorted posting lists as well as their variants and optimisations. Our explanations of query processing strategies, for instance the WAND and BMW dynamic pruning algorithms, are presented with illustrative figures showing how the processing state changes as the algorithms progress. Moreover, acknowledging the recent trends in applying a cascading infrastructure within search systems, this survey describes techniques for efficiently integrating effective learned models, such as those obtained from learning-to-rank techniques. The survey also covers the selective application of query processing techniques, often achieved by predicting the response times of the search engine (known as query efficiency prediction), and making per-query tradeoffs between efficiency and effectiveness to ensure that the required retrieval speed targets can be met. Finally, the survey concludes with a summary of open directions in efficient search infrastructures, namely the use of signatures, real-time, energy-efficient and modern hardware and software architectures
    • …
    corecore