186 research outputs found

    Transition towards sustainability in agriculture and food systems: Role of information and communication technologies

    Get PDF
    Food sustainability transitions refer to transformation processes necessary to move towards sustainable food systems. Digitization is one of the most important ongoing transformation processes in global agriculture and food chains. The review paper explores the contribution of information and communication technologies (ICTs) to transition towards sustainability along the food chain (production, processing, distribution, consumption). A particular attention is devoted to precision agriculture as a food production model that integrates many ICTs. ICTs can contribute to agro-food sustainability transition by increasing resource productivity, reducing inefficiencies, decreasing management costs, and improving food chain coordination. The paper also explores some drawbacks of ICTs as well as the factors limiting their uptake in agriculture. Keywords: Sustainability transitions, ICT, Agriculture digitization, Food supply chain, Food processing, Distribution, Consumptio

    Integrated supply chain and competitive facility location models

    Get PDF
    Önsel Ekici, Şule (Dogus Author) -- Conference full title: XIV.International Logistics And Supply Chain Congress, 1-2 Aralık 2016, İzmir.The optimization of supply chain networks plays a key role in determining the competitiveness of the whole supply chain. Therefore, during the last two decades, an increasing number of studies have focused on the optimization of the overall supply chain network. However, in most of these optimization studies, the structure of the network is considerably simplified and there is still a need for more comprehensive models that simultaneously capture many aspects that are relevant to real-world problems such as demand dynamics on the market. Facility location decisions—more specifically, decisions on the physical network structure of a supply chain network—are important factors affecting chain’s competitiveness, especially for the supply chains serving retail markets. However, supply chain network optimization models in the current literature ignore the impacts of network decisions on customer demand. Nevertheless, competitive facility location problems model only the distribution part of the supply chain, even though they have certain characteristics of supply chain networks and analyze the rival chains existing on the market. In this study, an integrated supply chain network optimization model based on the joint supply chain network optimization and competitive facility location models is proposed to analyze the results of ignoring the impacts of network decisions on customer demand. The unique unknown variable within the model is the demand. The demand at each customer zone is assumed to be determined by price and the utility function. The utility function is defined as the availability of same-day transportation from the distribution center to the customer zone

    Advances in Plant Molecular Farming

    Get PDF
    Plant molecular farming (PMF) is a new branch of plant biotechnology, where plants are engineered to produce recombinant pharmaceutical and industrial proteins in large quantities. As an emerging subdivision of the biopharmaceutical industry, PMF is still trying to gain comparable social acceptance as the already established production systems that produce these high valued proteins in microbial, yeast, or mammalian expression systems. This article reviews the various cost-effective technologies and strategies, which are being developed to improve yield and quality of the plant-derived pharmaceuticals, thereby making plantbased production system suitable alternatives to the existing systems. It also attempts to overview the different novel plant-derived pharmaceuticals and non-pharmaceutical protein products that are at various stages of clinical development or commercialization. It then discusses the biosafety and regulatory issues, which are crucial (if strictly adhered to) to eliminating potential health and environmental risks, which in turn is necessary to earning favorable public perception, thus ensuring the success of the industr

    From greenhouse to field practice : herbicide resistance detection using chlorophyll-fluorescence-imaging technology

    Get PDF
    All over the world, herbicide resistance has developed to one of the most important barriers in weed control, making the implementation of the weed control strategy more complicated. There is an intense need for a rapid, cheap and reliable method to conduct in field detection of herbicide resistant weed populations. In the current thesis with the use of chlorophyll fluorescence imaging technology, such a method is implemented and tested in field conditions. A series of experiments were designed and carried out. The data gathered from these experiments were compiled under three paper articles. Paper 1. A greenhouse experiment was conducted to verify if the parameter, Maximal Photosystem II Quantum Yield (Fv/Fm), could possibly indicate the herbicide efficacy. The chlorophyll-fluorescence-imaging sensor, Weed PAM®, was selected for the measurements. In the first part it was investigated if the Fv/Fm value could differentiate between herbicide sensitive and resistant plants. In the second part two important abiotic stress factors were tested if they affected the Fv/Fm value. I) Six herbicides were tested on herbicide sensitive and resistant Alopecurus myosuroides populations; II) Water shortage and nitrogen deficiency were applied on a herbicide sensitive population to observe their influence on the plants. The sensitive plants presented significantly lower Fv/Fm values than the resistant plants 3 days after treatment (DAT) for the ALS and ACCase inhibitors. On the same day, and for the same treatments the Fv/Fm values of the resistant plants were not affected and similar to the control. Appling a PS II inhibitor reduced the Fv/Fm values of both sensitive and resistant plants rapidly. Yet, sensitive and resistant plants could clearly be separated on 4 DAT based on the different Fv/Fm values. On the other hand, nitrogen deficiency did not influence the photosystem II measurements. Water shortage reduced rapidly the Fv/Fm value of the plants seven days after the application, yet at this point plant symptoms included the death of the plants. According to this experiment, the Weed PAM® sensor has proved its capability to identify the sensitive and resistant A. myosuroides populations shortly after the herbicide application. Paper 2. A verification of the above results was made under field conditions for different A. myosuroides populations and different locations. On the first part 50 populations in total including both sensitive and herbicide resistant populations were tested. The second part field experiments were conducted in ten locations around Germany over two years with the local field population mix. It was investigated if the Weed PAM® sensor could separate between herbicide sensitive and resistant A. myosuroides populations 5 DAT. The different populations were sown in a winter wheat field. Two ACCase- and three ALS- inhibitors were applied. In all herbicide treatments, Fv/Fm values of A. myosuroides were significantly lower than the untreated plants at the 5 DAT. For each location, measurements were conducted at 5 DAT. A visual measurement, to verify the result, was carried out at 21 DAT. In both cases, 95% of the plants were correctly identified as sensitive or resistant. This demonstrated the ability of the Weed PAM® sensor to conduct in field real time detection of herbicide resistant A. myosuroides populations shortly after treatment. Paper 3. Greenhouse and field experiments were carried out to investigate if the chlorophyll fluorescence of soybean plants was altered, under herbicide stress. Herbicide combinations including inhibitors of PS II, DOXP synthase, cell division and microtubule assembly were selected for different pre-emergence treatments. Herbicide combinations including inhibitors of PS II, ALS and ACCase were applied in post-emergence treatments. Chlorophyll fluorescence was measured from the emergence of soybeans until the three/four-leaf stage. Furthermore the stress effect of the different treatments on the soybean plants was determined by measuring their dry biomass. In the greenhouse, post-emergence treatments with ALS and ACCase inhibitors did not seem to induce stress on the soybean plants. As expected, it originally demonstrated low Fv/Fm values when stressed by PS II inhibitors. But the PS II system recovered soon, one week after emergence. Stress induced by other pre-emergence herbicides occurred one week after emergence and lasted longer than the stress induced by the PS II inhibitors. Dry biomass collaborated with the sensor result. Based on the current thesis, the Weed PAM® system can be an important tool in the identification of herbicide resistant weed populations, in a timely manner. It has proven its capabilities both in A. myosuroides as a weed and in soybean plants. This technology will help farmers to take more suitable weed control strategies, as well as less economic and environmental risks.Die weltweite Zunahme an Herbizidresistenzen stellt eine der größten Herausforderungen der heutigen Unkrautbekämpfung dar. Die heutige Landwirtschaft verlangt eine effiziente, kostengünstige und zuverlässige Methode um Herbizidresistenzen an Unkräutern direkt im Feld zu erkennen. Hierzu wurden mehrere Studien im Gewächshaus und unter Feldbedingungen durchgeführt, die in drei Artikeln veröffentlicht wurden. Experiment 1. In diesem Teil der Arbeit wurde ein Gewächshausexperiment mit dem bildgebenden Chlorophyllfluoreszenz-Sensor Weed PAM® durchgeführt. Um die Effektivität von Herbiziden festzustellen wurde der vielversprechende Parameter Maximaler Photosystem II Quantenertrag (Fv/Fm) mit dem Sensor gemessen. Im ersten Versuch wurden sechs verschiedene Herbizide an sensitiven sowie resistenten Alopecurus myosuroides Populationen getestet. Im zweiten Versuch wurden sensitive Populationen Wasserknappheit und Stickstoffmangel ausgesetzt, um deren Stressreaktionen zu beobachten. Dieser Versuch trug dazu bei die Einflüsse von abiotischen Faktoren auf die Fv/Fm-Werte zu erkennen. Die Ergebnisse zeigten, dass 3 Tage nach einer Behandlung (TNB) mit ALS- und ACCase-Hemmern die sensitiven Pflanzen signifikant geringere Fv/Fm-Werte aufwiesen, als die resistenten Populationen. Es zeigte sich nur ein geringer Einfluss des Herbizidstresses auf das Photosystem II der resistenten Pflanzen nach der Behandlung mit ALS- und ACCase-Hemmern. Die Fv/Fm-Werte sensitiver und resistenter Pflanzen fielen unter dem Einfluss von PS II Hemmern jedoch rapide ab. 4 TNB zeigte sich, dass die Fv/Fm-Werte der beiden Populationen sich signifikant unterschieden. Stickstoffmangel hatte während der Messungen keinen signifikanten Einfluss auf das Photosystem II, wohingegen sieben Tage nach Initiierung der Wasserknappheit eine schnelle Reduktion der Fv/Fm-Werte aufgetreten ist. Nach den Ergebnissen dieses Experimentes ist der Weed PAM® Sensor dazu in der Lage kurz nach einer Herbizidbehandlung sensitive und resistente Populationen von A. myosuroides zu erkennen. Experiment 2. Dieses Experiment untersuchte die Erkennung von Herbizideffektivität auf sensitive Pflanzen unter Feldbedingungen mithilfe des Weed PAM® Sensors. Zudem wurde getestet, ob der Sensor in der Lage ist unter diesen Bedingungen auch herbizidresistente A.myosuroides Populationen 5 TNB festzustellen. Auf einem Winterweizenschlag wurde eine herbizidsensitive Population von A. myosuroides ausgesät und mit zwei ACCase- und drei ALS-Hemmern behandelt. Die Fv/Fm-Werte der A.myosuroides Pflanzen waren 5 TNB in allen Herbizidbehandlungen signifikant geringer im Vergleich zu den unbehandelten Pflanzen. Innerhalb von 2 Jahren wurden in einem weiteren Experiment insgesamt 50 sensitive und resistente Populationen an zehn Standorten getestet. Eine visuelle Bonitur erfolgte 21 TNB. Die Ergebnisse zeigten, dass 95% der Erkennungen korrekt durchgeführt wurden. Dies zeigt die hohe Genauigkeit des Weed PAM® Sensors für eine direkte Herbizidresistenz-Erkennung von A.myosuroides Populationen kurz nach der Applikation unter Feldbedingungen. Experiment 3. In diesem Teil der Arbeit wurden in Gewächshaus- und Feldversuchen Sojabohnen einem Herbizidstress ausgesetzt, um zu untersuchen, ob sich die Chlorophyllfluoreszenz-Emissionen nach einer Herbizidapplikation ändern. Herbizid-Kombinationen mit Hemmern des PS II-Systems, der DOXP Synthase und der Zellteilung, sowie des Mikrotubuliaufbaus stellten die Vorauflauf-Varianten dar. Die Nachauflauf-Varianten bestanden aus Herbizidmischungen mit PS II, ALS- und ACCase hemmern. Die Chlorophyllfluoreszenz wurde direkt nach dem Auflaufen der Sojabohnen bis zum 3-4 Blatt Stadium gemessen. Durch die Messung der Trockenmasse der Sojabohnen wurde das Stressniveau bestimmt. Im Gewächshausexperiment wurde beobachtet, dass kein Stress durch die Nachauflauf-Varianten in den Sojabohnen induziert wurde. Pflanzen, die durch PS II-Hemmer gestresst wurden, zeigten nach dem Auflaufen geringe Fv/Fm-Werte. Das Photosystem II der Pflanzen erholte sich jedoch innerhalb einer Woche auf das Niveau der unbehandelten Kontrolle. Der Stress durch andere Nachauflauf-Varianten trat eine Woche nach dem Auflauf auf und dauerte länger an als die Variante mit PS II-Hemmern. Die Aufnahmen der Trockenmasse bestätigten die Erkenntnisse der auf Chlorophyllfluoreszenz basierten Stresserkennung. Unter Zuhilfenahme des Weed PAM® Systems ist es Landwirten möglich die richtigen Unkrautbekämpfungsmaßnahmen noch in derselben Vegetationsperiode zu ergreifen in der das Resistenzproblem in ihrem Feld erkannt wurde. Zusammenfassend hilft diese neue Technologie den Landwirten geeignetere Unkrautbekämpfungsstrategien zu entwickeln und geringere ökonomische und ökologische Risiken einzugehen

    From greenhouse to field practice : herbicide resistance detection using chlorophyll-fluorescence-imaging technology

    Get PDF
    All over the world, herbicide resistance has developed to one of the most important barriers in weed control, making the implementation of the weed control strategy more complicated. There is an intense need for a rapid, cheap and reliable method to conduct in field detection of herbicide resistant weed populations. In the current thesis with the use of chlorophyll fluorescence imaging technology, such a method is implemented and tested in field conditions. A series of experiments were designed and carried out. The data gathered from these experiments were compiled under three paper articles. Paper 1. A greenhouse experiment was conducted to verify if the parameter, Maximal Photosystem II Quantum Yield (Fv/Fm), could possibly indicate the herbicide efficacy. The chlorophyll-fluorescence-imaging sensor, Weed PAM®, was selected for the measurements. In the first part it was investigated if the Fv/Fm value could differentiate between herbicide sensitive and resistant plants. In the second part two important abiotic stress factors were tested if they affected the Fv/Fm value. I) Six herbicides were tested on herbicide sensitive and resistant Alopecurus myosuroides populations; II) Water shortage and nitrogen deficiency were applied on a herbicide sensitive population to observe their influence on the plants. The sensitive plants presented significantly lower Fv/Fm values than the resistant plants 3 days after treatment (DAT) for the ALS and ACCase inhibitors. On the same day, and for the same treatments the Fv/Fm values of the resistant plants were not affected and similar to the control. Appling a PS II inhibitor reduced the Fv/Fm values of both sensitive and resistant plants rapidly. Yet, sensitive and resistant plants could clearly be separated on 4 DAT based on the different Fv/Fm values. On the other hand, nitrogen deficiency did not influence the photosystem II measurements. Water shortage reduced rapidly the Fv/Fm value of the plants seven days after the application, yet at this point plant symptoms included the death of the plants. According to this experiment, the Weed PAM® sensor has proved its capability to identify the sensitive and resistant A. myosuroides populations shortly after the herbicide application. Paper 2. A verification of the above results was made under field conditions for different A. myosuroides populations and different locations. On the first part 50 populations in total including both sensitive and herbicide resistant populations were tested. The second part field experiments were conducted in ten locations around Germany over two years with the local field population mix. It was investigated if the Weed PAM® sensor could separate between herbicide sensitive and resistant A. myosuroides populations 5 DAT. The different populations were sown in a winter wheat field. Two ACCase- and three ALS- inhibitors were applied. In all herbicide treatments, Fv/Fm values of A. myosuroides were significantly lower than the untreated plants at the 5 DAT. For each location, measurements were conducted at 5 DAT. A visual measurement, to verify the result, was carried out at 21 DAT. In both cases, 95% of the plants were correctly identified as sensitive or resistant. This demonstrated the ability of the Weed PAM® sensor to conduct in field real time detection of herbicide resistant A. myosuroides populations shortly after treatment. Paper 3. Greenhouse and field experiments were carried out to investigate if the chlorophyll fluorescence of soybean plants was altered, under herbicide stress. Herbicide combinations including inhibitors of PS II, DOXP synthase, cell division and microtubule assembly were selected for different pre-emergence treatments. Herbicide combinations including inhibitors of PS II, ALS and ACCase were applied in post-emergence treatments. Chlorophyll fluorescence was measured from the emergence of soybeans until the three/four-leaf stage. Furthermore the stress effect of the different treatments on the soybean plants was determined by measuring their dry biomass. In the greenhouse, post-emergence treatments with ALS and ACCase inhibitors did not seem to induce stress on the soybean plants. As expected, it originally demonstrated low Fv/Fm values when stressed by PS II inhibitors. But the PS II system recovered soon, one week after emergence. Stress induced by other pre-emergence herbicides occurred one week after emergence and lasted longer than the stress induced by the PS II inhibitors. Dry biomass collaborated with the sensor result. Based on the current thesis, the Weed PAM® system can be an important tool in the identification of herbicide resistant weed populations, in a timely manner. It has proven its capabilities both in A. myosuroides as a weed and in soybean plants. This technology will help farmers to take more suitable weed control strategies, as well as less economic and environmental risks.Die weltweite Zunahme an Herbizidresistenzen stellt eine der größten Herausforderungen der heutigen Unkrautbekämpfung dar. Die heutige Landwirtschaft verlangt eine effiziente, kostengünstige und zuverlässige Methode um Herbizidresistenzen an Unkräutern direkt im Feld zu erkennen. Hierzu wurden mehrere Studien im Gewächshaus und unter Feldbedingungen durchgeführt, die in drei Artikeln veröffentlicht wurden. Experiment 1. In diesem Teil der Arbeit wurde ein Gewächshausexperiment mit dem bildgebenden Chlorophyllfluoreszenz-Sensor Weed PAM® durchgeführt. Um die Effektivität von Herbiziden festzustellen wurde der vielversprechende Parameter Maximaler Photosystem II Quantenertrag (Fv/Fm) mit dem Sensor gemessen. Im ersten Versuch wurden sechs verschiedene Herbizide an sensitiven sowie resistenten Alopecurus myosuroides Populationen getestet. Im zweiten Versuch wurden sensitive Populationen Wasserknappheit und Stickstoffmangel ausgesetzt, um deren Stressreaktionen zu beobachten. Dieser Versuch trug dazu bei die Einflüsse von abiotischen Faktoren auf die Fv/Fm-Werte zu erkennen. Die Ergebnisse zeigten, dass 3 Tage nach einer Behandlung (TNB) mit ALS- und ACCase-Hemmern die sensitiven Pflanzen signifikant geringere Fv/Fm-Werte aufwiesen, als die resistenten Populationen. Es zeigte sich nur ein geringer Einfluss des Herbizidstresses auf das Photosystem II der resistenten Pflanzen nach der Behandlung mit ALS- und ACCase-Hemmern. Die Fv/Fm-Werte sensitiver und resistenter Pflanzen fielen unter dem Einfluss von PS II Hemmern jedoch rapide ab. 4 TNB zeigte sich, dass die Fv/Fm-Werte der beiden Populationen sich signifikant unterschieden. Stickstoffmangel hatte während der Messungen keinen signifikanten Einfluss auf das Photosystem II, wohingegen sieben Tage nach Initiierung der Wasserknappheit eine schnelle Reduktion der Fv/Fm-Werte aufgetreten ist. Nach den Ergebnissen dieses Experimentes ist der Weed PAM® Sensor dazu in der Lage kurz nach einer Herbizidbehandlung sensitive und resistente Populationen von A. myosuroides zu erkennen. Experiment 2. Dieses Experiment untersuchte die Erkennung von Herbizideffektivität auf sensitive Pflanzen unter Feldbedingungen mithilfe des Weed PAM® Sensors. Zudem wurde getestet, ob der Sensor in der Lage ist unter diesen Bedingungen auch herbizidresistente A.myosuroides Populationen 5 TNB festzustellen. Auf einem Winterweizenschlag wurde eine herbizidsensitive Population von A. myosuroides ausgesät und mit zwei ACCase- und drei ALS-Hemmern behandelt. Die Fv/Fm-Werte der A.myosuroides Pflanzen waren 5 TNB in allen Herbizidbehandlungen signifikant geringer im Vergleich zu den unbehandelten Pflanzen. Innerhalb von 2 Jahren wurden in einem weiteren Experiment insgesamt 50 sensitive und resistente Populationen an zehn Standorten getestet. Eine visuelle Bonitur erfolgte 21 TNB. Die Ergebnisse zeigten, dass 95% der Erkennungen korrekt durchgeführt wurden. Dies zeigt die hohe Genauigkeit des Weed PAM® Sensors für eine direkte Herbizidresistenz-Erkennung von A.myosuroides Populationen kurz nach der Applikation unter Feldbedingungen. Experiment 3. In diesem Teil der Arbeit wurden in Gewächshaus- und Feldversuchen Sojabohnen einem Herbizidstress ausgesetzt, um zu untersuchen, ob sich die Chlorophyllfluoreszenz-Emissionen nach einer Herbizidapplikation ändern. Herbizid-Kombinationen mit Hemmern des PS II-Systems, der DOXP Synthase und der Zellteilung, sowie des Mikrotubuliaufbaus stellten die Vorauflauf-Varianten dar. Die Nachauflauf-Varianten bestanden aus Herbizidmischungen mit PS II, ALS- und ACCase hemmern. Die Chlorophyllfluoreszenz wurde direkt nach dem Auflaufen der Sojabohnen bis zum 3-4 Blatt Stadium gemessen. Durch die Messung der Trockenmasse der Sojabohnen wurde das Stressniveau bestimmt. Im Gewächshausexperiment wurde beobachtet, dass kein Stress durch die Nachauflauf-Varianten in den Sojabohnen induziert wurde. Pflanzen, die durch PS II-Hemmer gestresst wurden, zeigten nach dem Auflaufen geringe Fv/Fm-Werte. Das Photosystem II der Pflanzen erholte sich jedoch innerhalb einer Woche auf das Niveau der unbehandelten Kontrolle. Der Stress durch andere Nachauflauf-Varianten trat eine Woche nach dem Auflauf auf und dauerte länger an als die Variante mit PS II-Hemmern. Die Aufnahmen der Trockenmasse bestätigten die Erkenntnisse der auf Chlorophyllfluoreszenz basierten Stresserkennung. Unter Zuhilfenahme des Weed PAM® Systems ist es Landwirten möglich die richtigen Unkrautbekämpfungsmaßnahmen noch in derselben Vegetationsperiode zu ergreifen in der das Resistenzproblem in ihrem Feld erkannt wurde. Zusammenfassend hilft diese neue Technologie den Landwirten geeignetere Unkrautbekämpfungsstrategien zu entwickeln und geringere ökonomische und ökologische Risiken einzugehen
    corecore