2,661 research outputs found

    Storage Solutions for Big Data Systems: A Qualitative Study and Comparison

    Full text link
    Big data systems development is full of challenges in view of the variety of application areas and domains that this technology promises to serve. Typically, fundamental design decisions involved in big data systems design include choosing appropriate storage and computing infrastructures. In this age of heterogeneous systems that integrate different technologies for optimized solution to a specific real world problem, big data system are not an exception to any such rule. As far as the storage aspect of any big data system is concerned, the primary facet in this regard is a storage infrastructure and NoSQL seems to be the right technology that fulfills its requirements. However, every big data application has variable data characteristics and thus, the corresponding data fits into a different data model. This paper presents feature and use case analysis and comparison of the four main data models namely document oriented, key value, graph and wide column. Moreover, a feature analysis of 80 NoSQL solutions has been provided, elaborating on the criteria and points that a developer must consider while making a possible choice. Typically, big data storage needs to communicate with the execution engine and other processing and visualization technologies to create a comprehensive solution. This brings forth second facet of big data storage, big data file formats, into picture. The second half of the research paper compares the advantages, shortcomings and possible use cases of available big data file formats for Hadoop, which is the foundation for most big data computing technologies. Decentralized storage and blockchain are seen as the next generation of big data storage and its challenges and future prospects have also been discussed

    Auto-Pipe and the X Language: A Toolset and Language for the Simulation, Analysis, and Synthesis of Heterogeneous Pipelined Architectures, Master\u27s Thesis, August 2006

    Get PDF
    Pipelining an algorithmis a popularmethod of increasing the performance of many computation-intensive applications. Often, one wants to form pipelines composed mostly of commonly used simple building blocks such as DSP components, simple math operations, encryption, or pattern matching stages. Additionally, one may desire to map these processing tasks to different computational resources based on their relative performance attributes (e.g., DSP operations on an FPGA). Auto-Pipe is composed of the X Language, a flexible interface language that aids the description of complex dataflow topologies (including pipelines); X-Com, a compiler for the X Language; X-Sim, a tool for modeling pipelined architectures based on measured, simulated, or derived task and communications behavior; X-Opt, a tool to optimize X applications under various metrics; and X-Dep, a tool for the automatic deployment of X-Com- or X-Sim-generated applications to real or simulated devices. This thesis presents an overview of the Auto-Pipe system, the design and use of the X Language, and an implementation of X-Com. Applications developed using the X Language are presented which demonstrate the effectiveness of describing algorithms using X, and the effectiveness of the Auto-Pipe development flow in analyzing and improving the performance of an application
    • …
    corecore