39,476 research outputs found

    Energy efficiency in discrete-manufacturing systems: insights, trends, and control strategies

    Get PDF
    Since the depletion of fossil energy sources, rising energy prices, and governmental regulation restrictions, the current manufacturing industry is shifting towards more efficient and sustainable systems. This transformation has promoted the identification of energy saving opportunities and the development of new technologies and strategies oriented to improve the energy efficiency of such systems. This paper outlines and discusses most of the research reported during the last decade regarding energy efficiency in manufacturing systems, the current technologies and strategies to improve that efficiency, identifying and remarking those related to the design of management/control strategies. Based on this fact, this paper aims to provide a review of strategies for reducing energy consumption and optimizing the use of resources within a plant into the context of discrete manufacturing. The review performed concerning the current context of manufacturing systems, control systems implemented, and their transformation towards Industry 4.0 might be useful in both the academic and industrial dimension to identify trends and critical points and suggest further research lines.Peer ReviewedPreprin

    Sequential Design for Ranking Response Surfaces

    Full text link
    We propose and analyze sequential design methods for the problem of ranking several response surfaces. Namely, given L2L \ge 2 response surfaces over a continuous input space X\cal X, the aim is to efficiently find the index of the minimal response across the entire X\cal X. The response surfaces are not known and have to be noisily sampled one-at-a-time. This setting is motivated by stochastic control applications and requires joint experimental design both in space and response-index dimensions. To generate sequential design heuristics we investigate stepwise uncertainty reduction approaches, as well as sampling based on posterior classification complexity. We also make connections between our continuous-input formulation and the discrete framework of pure regret in multi-armed bandits. To model the response surfaces we utilize kriging surrogates. Several numerical examples using both synthetic data and an epidemics control problem are provided to illustrate our approach and the efficacy of respective adaptive designs.Comment: 26 pages, 7 figures (updated several sections and figures

    Modelling soil water conent in a tomato field: proximal gamma ray spectroscopy and soil-crop system models

    Get PDF
    Proximal soil sensors are taking hold in the understanding of soil hydrogeological processes involved in precision agriculture. In this context, permanently installed gamma ray spectroscopy stations represent one of the best space-time trade off methods at field scale. This study proved the feasibility and reliability of soil water content monitoring through a seven-month continuous acquisition of terrestrial gamma radiation in a tomato test field. By employing a 1 L sodium iodide detector placed at a height of 2.25 m, we investigated the gamma signal coming from an area having a ~25 m radius and from a depth of approximately 30 cm. Experimental values, inferred after a calibration measurement and corrected for the presence of biomass, were corroborated with gravimetric data acquired under different soil moisture conditions, giving an average absolute discrepancy of about 2%. A quantitative comparison was carried out with data simulated by AquaCrop, CRITeRIA, and IRRINET soil-crop system models. The different goodness of fit obtained in bare soil condition and during the vegetated period highlighted that CRITeRIA showed the best agreement with the experimental data over the entire data-taking period while, in presence of the tomato crop, IRRINET provided the best results.Comment: 18 pages, 9 Figures, 3 Table

    Smart Grid Technologies in Europe: An Overview

    Get PDF
    The old electricity network infrastructure has proven to be inadequate, with respect to modern challenges such as alternative energy sources, electricity demand and energy saving policies. Moreover, Information and Communication Technologies (ICT) seem to have reached an adequate level of reliability and flexibility in order to support a new concept of electricity network—the smart grid. In this work, we will analyse the state-of-the-art of smart grids, in their technical, management, security, and optimization aspects. We will also provide a brief overview of the regulatory aspects involved in the development of a smart grid, mainly from the viewpoint of the European Unio

    Analysis of Sample Acquisition Dynamics Using Discrete Element Method

    Get PDF
    The analysis presented in this paper is conducted in the framework of the Ocean Worlds Autonomy Testbed for Exploration Research and Simulation (OceanWATERS) project, currently under development at NASA Ames Research Center. OceanWATERS aims at designing a simulation environment which allows for testing autonomy of scientific lander missions to the icy moons of our solar system. Mainly focused on reproducing the end effector interaction with the inherent terrain, this paper introduces a novel discrete element method (DEM)-based approach to determine forces and torques acting on the landers scoop during the sample acquisition process. An accurate force feedback from the terrain on the scoop is required by fault-detection and autonomous decision-making algorithms to identify when the requested torque on the robotic arms joints exceeds the maximum available torque. Knowledge of the terrain force feedback significantly helps evaluating the arms links structural properties and properly selecting actuators for the joints. Models available in literature constitute a partial representation of the dynamics of the interaction. As an example, Balovnev derived an analytical expression of the vertical and horizontal force acting on a bucket while collecting a sample as a function of its geometry and velocity, soil parameters and reached depth. Although the model represents an adequate approximation of the two force components, it ignores the direction orthogonal to the scoop motion and neglects the torque. This work relies on DEM analysis to compensate for analytical models deficiencies and inaccuracies, i. e. provide force and torque 3D vectors, defined in the moving reference (body) frame attached to the scoop, at each instant of the sample collection process. Results from the first presented analysis relate to the specific OceanWATERS sampling strategy, which consists of collecting the sample through five consecutive passes with increasing depth, each pass following the same circularlinear- circular trajectory. Data is collected given a specific scoop design interacting with two types of bulk materials, which may characterize the surface of icy planetary bodies: snow and ice. Although specifically concerned with the OceanWATERS design, this first analysis provides the expected force trends for similar sampling strategies and allows to deduce phenomenological information about the general scooping process. In order to further instruct the community on the use of DEM tools as a solution to the sampling collection problem, two more analyses have been carried out, mainly focused on reducing the DEM computation time, which increases with a decrease in particle size. After running a set of identical simulations, where the only changing parameter is the size of the spherical particle, it is observed that the resulting force trajectories, starting from a given particle size, converge to the true trend. It is deducible that a further decrease in size yields negligible improvements in the accuracy, while it sensibly increases computation time. A final analysis aims at discussing limitations of approximating bulk material particles having a complex shape, e. g. ice fragments, with spheres, by comparing force trends resulting in the two cases for the same simulation scenario
    corecore