40,687 research outputs found

    Wireless Intraocular Pressure Sensing Using Microfabricated Minimally Invasive Flexible-Coiled LC Sensor Implant

    Get PDF
    This paper presents an implant-based wireless pressure sensing paradigm for long-range continuous intraocular pressure (IOP) monitoring of glaucoma patients. An implantable parylene-based pressure sensor has been developed, featuring an electrical LC-tank resonant circuit for passive wireless sensing without power consumption on the implanted site. The sensor is microfabricated with the use of parylene C (poly-chlorop- xylylene) to create a flexible coil substrate that can be folded for smaller physical form factor so as to achieve minimally invasive implantation, while stretched back without damage for enhanced inductive sensor–reader coil coupling so as to achieve strong sensing signal. A data-processed external readout method has also been developed to support pressure measurements. By incorporating the LC sensor and the readout method, wireless pressure sensing with 1-mmHg resolution in longer than 2-cm distance is successfully demonstrated. Other than extensive on-bench characterization, device testing through six-month chronic in vivo and acute ex vivo animal studies has verified the feasibility and efficacy of the sensor implant in the surgical aspect, including robust fixation and long-term biocompatibility in the intraocular environment. With meeting specifications of practical wireless pressure sensing and further reader development, this sensing methodology is promising for continuous, convenient, direct, and faithful IOP monitoring

    A new photobioreactor for continuous microalgal production in hatcheries based on external-loop airlift and swirling flow

    Get PDF
    This study deals with the scale of a new photobioreactor for continuous microalgal production in hatcheries. The combination of the state-of-art with the constraints inherent to hatcheries has turned the design into a closed, artificially illuminated and external-loop airlift configuration based on a succession of elementary modules, each one being composed of two transparent vertical interconnected columns. The liquid circulation is ensured pneumatically (air injections) with respect to a swirling motion (tangential inlets). A single module of the whole photobioreactor was built-up to investigate how parameters, such as air sparger type, gas flow rate, tangential inlet, column radius and height can influence radiative transfer, hydrodynamics, mass transfer and biological performances. The volumetric productivities were predicted by modeling radiative transfer and growth of Isochrysis affinis galbana (clone Tahiti). The hydrodynamics of the liquid phase was modeled in terms of global flow behavior (circulation and mixing times, PĂ©clet number) and of swirling motion decay along the column (Particle Image Velocimetry). The aeration performances were determined by overall volumetric mass transfer measurements. Continuous cultures of Isochrysis affinis galbana (clone Tahiti) were run in two geometrical configurations, generating either an axial or a swirling flow. Lastly, the definitive options of design are presented as well as a 120 Liter prototype, currently implemented in a French mollusk hatchery and commercialized

    Comparison of Geometric Optimization Methods with Multiobjective Genetic Algorithms for Solving Integrated Optimal Design Problems

    Get PDF
    In this paper, system design methodologies for optimizing heterogenous power devices in electrical engineering are investigated. The concept of Integrated Optimal Design (IOD) is presented and a simplified but typical example is given. It consists in finding Pareto-optimal configurations for the motor drive of an electric vehicle. For that purpose, a geometric optimization method (i.e the Hooke and Jeeves minimization procedure) associated with an objective weighting sum and a Multiobjective Genetic Algorithm (i.e. the NSGA-II) are compared. Several performance issues are discussed such as the accuracy in the determination of Pareto-optimal configurations and the capability to well spread these solutions in the objective space

    A Multiscale Thermo-Fluid Computational Model for a Two-Phase Cooling System

    Get PDF
    In this paper, we describe a mathematical model and a numerical simulation method for the condenser component of a novel two-phase thermosyphon cooling system for power electronics applications. The condenser consists of a set of roll-bonded vertically mounted fins among which air flows by either natural or forced convection. In order to deepen the understanding of the mechanisms that determine the performance of the condenser and to facilitate the further optimization of its industrial design, a multiscale approach is developed to reduce as much as possible the complexity of the simulation code while maintaining reasonable predictive accuracy. To this end, heat diffusion in the fins and its convective transport in air are modeled as 2D processes while the flow of the two-phase coolant within the fins is modeled as a 1D network of pipes. For the numerical solution of the resulting equations, a Dual Mixed-Finite Volume scheme with Exponential Fitting stabilization is used for 2D heat diffusion and convection while a Primal Mixed Finite Element discretization method with upwind stabilization is used for the 1D coolant flow. The mathematical model and the numerical method are validated through extensive simulations of realistic device structures which prove to be in excellent agreement with available experimental data
    • …
    corecore