101 research outputs found

    On Fine-Grained Access Control for XML

    Get PDF
    Fine-grained access control for XML is about controlling access to XML documents at the granularity of individual elements or attributes. This thesis addresses two problems related to XML access controls. The first is efficient, secure evaluation of XPath expressions. We present a technique that secures path expressions by means of query modification, and we show that the query modification algorithm is correct under a language-independent semantics for secure query evaluation. The second problem is to provide a compact, yet useful, representation of the access matrix. Since determining a user's privilege directly from access control policies can be extremely inefficient, materializing the access matrix---the net effect of the access control policies---is a common approach to speed up the authorization decision making. The fine-grained nature of XML access controls, however, makes the space cost of matrix materialization a significant issue. We present a codebook-based technique that records access matrices compactly. Our experimental study shows that the codebook approach exhibits significant space savings over other storage schemes, such as the access control list and the compressed accessibility map. The solutions to the above two problems provide a foundation for the development of an efficient mechanism that enforces fine-grained access controls for XML databases in the cases of query access

    A flexible mandatory access control policy for XML databases

    Get PDF
    A flexible mandatory access control policy (MAC) for XML databases is presented in this paper. The label type and label access policy can be defined according to the requirements of applications. In order to preserve the integrity of data in XML databases, a constraint between a read access rule and a write access rule in label access policy is introduced. Rules for label assignment and propagation are proposed to alleviate the workload of label assignment. Also, a solution for resolving conflicts of label assignments is proposed. At last, operations for implementation of the MAC policy in a XML database are illustrated

    Accelerating data retrieval steps in XML documents

    Get PDF

    Taming XPath Queries by Minimizing Wildcard Steps

    Get PDF

    A function-based access control model for XML databases

    Full text link

    Distributed Secure and Privacy-Preserving Information Using Brokering System

    Get PDF
    Abstract-Interaction between entities that may not trust each other is now commonplace on the Internet. It focuses on the specific problem of sharing information between distrusting parties. Previous work in this area shows that privacy and utility can co-exist, but often do not provide strong assurances of one or the other. To sketch a research agenda with several directions for attacking these problems, considering several alternative systems that examine the privacy vs. utility problem from different angles. Therefore to propose a novel approach to preserve privacy of multiple stakeholders involved in the information brokering process. First of all to define two privacy attacks, namely attribute-correlation attack and inference attack, and propose two countermeasure schemes such as automaton segmentation and query segment encryption to securely share the routing decisionmaking responsibility among a selected set of brokering Servers. With comprehensive security analysis and experimental results, shows that our approach seamlessly integrates security enforcement with query routing to provide system-wide security with insignificant overhead. Keywords -Access control, information sharing, privacy. I.INTRODUCTION Along with the explosion of information collected by organizations in many realms ranging from business to government agencies, there is an increasing need for interorganizational information sharing to facilitate extensive collaboration. While many efforts have been devoted to reconcile data heterogeneity and provide interoperability, the problem of balancing peer autonomy and system coalition is still challenging. Most of the existing systems work on two extremes of the spectrum, adopting either the query-answering model to establish pair wise client-server connections for ondemand information access, where peers are fully autonomous but there lacks system wide coordination, or the distributed database model, where all peers with little autonomy are managed by a unified DBMS. Unfortunately, neither model is suitable for many newly emerged applications, such as healthcare or law enforcement information sharing, in which organizations share information in a conservative and controlled manner due to business considerations or legal reasons. Take healthcare information systems as example. Regional Health Information Organization (RHIO) In previous study brokers. Queries are sent to the local broker and routed according to the metadata until reaching the right data server(s). In this way, a large number of information sources in different organizations are loosely federated to provide a unified, transparent, and on-demand data access.While the IBS approach provides scalability and server autonomy, privacy concerns arise, as brokers are no longer assumed fully trustable-the broker functionality may be outsourced to third-party providers and thus vulnerable to be abused by insiders or compromised by outsiders. It presents a general solution to the privacypreserving information sharing problem. First, to address the need for privacy protection. Here, propose a novel IBS, namely Privacy Preserving Information Brokering(PPIB). It is an overlay infrastructure consisting of two types of brokering components, brokersand coordinators. The brokers, acting as mix anonymizer In this paper is organized as follows introduce the related work in Section II, and discuss the privacy requirements and threats in the information brokering scenario in Section III, and Section IV, its present two core brokering schemes and the types as follows. Thendiscuss the construct the maintenance in Section V, evaluate the performance in Section VI, and conclude future work in Section VII. II. RELATED WORKS Research areas such as information integration, peer-to-peer file sharing systems and publish-subscribe systems provide partial solutions to the problem of largescale data sharing. In this section, the discussed about the Information integration system, Automation segmentation and XML query routing. A. INFORMATION BROKERING SYSTEM Information integration approaches focus on providing an integrated view over a large number of heterogeneous data sources by exploiting the semantic relationship between schemas of different sources [8]- While PPIB aims to locate relevant data sources for a given query and route the query to these data sources.PPIB addresses more privacy concerns other than anonymity, and thus faces more challenges. B. NON-DETERMINISTIC FINITE AUTOMATON It adopts an NFA-based query rewriting access control scheme proposed recently in [15], It adopt the Nondeterministic Finite Automaton (NFA) based approach as presented in C.XML QUERY ROUTING Research on distributed access control is also related to work gives a good overview on access control in collaborative systems The eXtensible Markup Language (XML) has emerged as the de facto standard for information sharing due to its rich semantics and extensive expressiveness. We assume that all the data sources in PPIB exchange information in XML format, i.e., taking XPath[16] queries and returning XML data. Note that the more powerful XML query language, XQuery, still uses XPath to access XML nodes. In XPath, predicates are used to eliminate unwanted nodes, where test conditions are contained within square brackets. To specify the authorization at the node level, fine-grained access control models are desired. In particular, specialized data structures are maintained on overlay nodes to route XML queries. In [3], a robust mesh has been built to effectively route XML packets by making use of self-describing XML tags and the overlay networks. Koudset al. also proposed a decentralized architecture for ad hoc XPath query routing across a collection of XML database

    Query Evaluation in the Presence of Fine-grained Access Control

    Get PDF
    Access controls are mechanisms to enhance security by protecting data from unauthorized accesses. In contrast to traditional access controls that grant access rights at the granularity of the whole tables or views, fine-grained access controls specify access controls at finer granularity, e.g., individual nodes in XML databases and individual tuples in relational databases. While there is a voluminous literature on specifying and modeling fine-grained access controls, less work has been done to address the performance issues of database systems with fine-grained access controls. This thesis addresses the performance issues of fine-grained access controls and proposes corresponding solutions. In particular, the following issues are addressed: effective storage of massive access controls, efficient query planning for secure query evaluation, and accurate cardinality estimation for access controlled data. Because fine-grained access controls specify access rights from each user to each piece of data in the system, they are effectively a massive matrix of the size as the product of the number of users and the size of data. Therefore, fine-grained access controls require a very compact encoding to be feasible. The proposed storage system in this thesis achieves an unprecedented level of compactness by leveraging the high correlation of access controls found in real system data. This correlation comes from two sides: the structural similarity of access rights between data, and the similarity of access patterns from different users. This encoding can be embedded into a linearized representation of XML data such that a query evaluation framework is able to compute the answer to the access controlled query with minimal disk I/O to the access controls. Query optimization is a crucial component for database systems. This thesis proposes an intelligent query plan caching mechanism that has lower amortized cost for query planning in the presence of fine-grained access controls. The rationale behind this query plan caching mechanism is that the queries, customized by different access controls from different users, may share common upper-level join trees in their optimal query plans. Since join plan generation is an expensive step in query optimization, reusing the upper-level join trees will reduce query optimization significantly. The proposed caching mechanism is able to match efficient query plans to access controlled query plans with minimal runtime cost. In case of a query plan cache miss, the optimizer needs to optimize an access controlled query from scratch. This depends on accurate cardinality estimation on the size of the intermediate query results. This thesis proposes a novel sampling scheme that has better accuracy than traditional cardinality estimation techniques

    IDEAS-1997-2021-Final-Programs

    Get PDF
    This document records the final program for each of the 26 meetings of the International Database and Engineering Application Symposium from 1997 through 2021. These meetings were organized in various locations on three continents. Most of the papers published during these years are in the digital libraries of IEEE(1997-2007) or ACM(2008-2021)
    • …
    corecore